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Abstract
Early detection and monitoring of Parkinson’s disease are cru-
cial for properly treating and managing the symptoms. Auto-
matic speech and language analysis has emerged as a promising
non-invasive method to monitor the patient’s state. This study
analyzed different speech and language representations for au-
tomatic classification between Parkinson’s disease patients and
healthy controls. First, each modality is analyzed indepen-
dently. General representations such as Wav2vec or BETO
are used together with representations oriented to model dis-
ease traits such as phonemic identifiability in speech modality
and grammatical units analysis in language modality. The best
speech and language representations were combined using a fu-
sion strategy based on Gated Multimodal Units. The best results
are achieved with the multimodal approach, outperforming all
results obtained with unimodal representations and the tradi-
tional fusion strategy.
Index Terms: Speech analysis, language analysis, multimodal

1. Introduction
Parkinson’s disease (PD) is a neurodegenerative disorder that
is characterized by the gradual loss of dopaminergic neurons
in the mid-brain [1], resulting in various motor and non-motor
symptoms, including tremors, bradykinesia, cognitive decline,
depression, and others [1, 2]. The early detection of PD and the
monitoring constant is crucial for properly treating and man-
aging the disease. While there are various methods for detect-
ing PD, the analysis of speech and language has emerged as a
promising approach due to its non-invasive and cost-effective
nature. Typically, PD patients develop hypokinetic dysarthria,
which is a speech disorder characterized by reduced voice
quality, mono loudness, monotonicity, imprecise pronunciation
of both consonants and vowels, and others [3, 4]. Further-
more, PD is characterized by various lexico-semantic abnor-
malities, including reduced verbal fluency, significant impair-
ment in producing spontaneous speech [5], alterations in the us-
age and production of motor verbs (i.e., verbs denoting bodily
movements)[6, 7], and deficits related to learning new verbs[8].
The automatic analysis of PD has focused more extensively on
speech than on language, mainly due to the fact that speech im-
pairments are a hallmark symptom of the disease, and they tend
to be more noticeable and have a more significant impact on the
patient’s quality of life. However, recent studies have shown
that language analysis can provide a better understanding of the
cognitive difficulties experienced by people with PD.

Pathological speech in PD has generated significant inter-

est in recent years. Different studies have proposed approaches
based on Deep Learning (DL) models to detect speech impair-
ments and predict PD progression. Some studies considered
models based on Convolutional Neural Networks (CNN) us-
ing spectrograms as input to classify PD patients and Healthy
Controls (HCs) or to detect dysarthria and predict its severity
level [9, 10]. Recent works implemented a model combin-
ing unidimensional-CNN (1D-CNN) and bidimensional-CNN
(2D-CNN) to capture frequency and time information [11, 12].
Other works have focused on representations that aim to model
acoustic cues of PD; in [13, 14], authors used different feature
sets to model different speech dimensions such as phonation,
prosody, and articulation, and then this features sets are used to
classify PD patients and HCs. A similar approach was proposed
in [15], where the authors modeled the phoneme articulation
precision in PD patients using features set of phonetic informa-
tion. Finally, in a recent work [16], prosody, articulation, and
phonemic information features were combined to classify PD
patients and HCs. The features based on phonemic informa-
tion were used to discriminate PD patients with cognitive im-
pairment from control subjects, with an accuracy of 87%. The
approach also distinguished between cognitively spared and im-
paired patients with accuracies of up to 72%.

Several studies have explored the automatic analysis of lan-
guage abnormalities in PD using Natural Language Process-
ing (NLP) techniques such as: Bag of Words (BoW), Term
Frequency-Inverse Document Frequency (TF-IDF), Global
Vector Representations (GloVe), Word2vec, and others. Al-
though these general representations were not developed explic-
itly for mapping PD traits, some of them have demonstrated cor-
relations with certain cognitive tests and achieved to classify PD
patients and HCs with accuracies of up to 72% [17, 18]. Other
studies aim to create more specific representations to model lin-
guistic cues of the pathology. In [19] 17 PD patients and 15
HCs listened to verbs and nouns during functional Magnetic
Resonance Imaging (MRI) scans. The authors found no con-
nectivity differences between PD and HC during noun listen-
ing, but functional connectivity differences were found during
action-verb processing. Thus, verb production analysis in PD
patients can be useful to model different traits of the pathology.
Similarly, in [20], the authors aimed to classify PD patients and
HC using retellings of action and non-action stories produced
by 80 participants (40 PD patients). In each retelling transliter-
ation, authors weighted action and non-action concepts using a
Proximity-to-Reference-Semantic-Field (P-RSF) metric, which
was computed using Latent Semantic Analysis (LSA). These
features were used to train an SVM as a classifier, and accura-
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cies of up to 85% were obtained using the retelling of action
stories. Results of that work indicate that PD patients exhibit an
impaired ability to process action concepts compared with non-
action concepts. The main limitation of this work was that the
P-RSF metric depends on a text-specific task. Therefore, this
approach cannot be generalized to tasks such as monologue.
The fusion between speech and language has been poorly ex-
plored in the automatic PD analysis. In [21], depression in
people with PD was modeled using speech and language rep-
resentations. The authors utilized Bidirectional Encoder Rep-
resentations from Transformer (BERT) to model the transliter-
ations of monologues and acoustic features such as Bark band
energies and Mel frequency cepstral coefficients to model the
corresponding speech signal. Both representations were com-
bined using an early fusion strategy, where F1-scores of up to
77% were obtained in the classification of depressed and non-
depressed PD patients.

This paper compares unimodal and multimodal approaches
to classify PD patients and HCs based on speech and language
analysis. For each modality, we consider two approaches: gen-
eral and uninterpretable representations and pathology-oriented
representations, which aim to characterize typical traits of PD.
Speech recordings are analyzed using representations extracted
from Wav2vec 2.0 model and representations that consider dif-
ferent speech dimensions, such as prosody, articulation, and
phonemic information. In language, we explored typical rep-
resentations based on BETO (BERT model trained with Span-
ish corpus), such as the statistical functionals of the word-
embeddings that compose the document and representations
pathology-oriented, where a 1D-CNN is used to analyze the
deficit of PD patients to process grammatical units such as verbs
and nouns. Finally, we combine both information sources us-
ing Gated Multimodal Units (GMUs), which combines the ad-
vantages of early and late fusion to find an intermediate repre-
sentation based on a combination of data from both modalities.
The remainder of this paper is organized as follows. Section
2 presents the materials and methods used in this study. Sec-
tion 3 describes the experimental setup and the results. Finally,
Section 4 contains the conclusions and future work.

2. Materials and methods
2.1. Data
The study includes 165 participants, divided into two groups:
80 PD patients and 85 HCs. All participants are native Span-
ish speakers from Colombia, and the groups are balanced in
age and gender. These recordings are part of an extended ver-
sion of the PC-GITA corpus [22]; they were normalized using
a GSM full-rate compression technique and down-sampled to 8
kHz [23]. A neurologist expert evaluated PD patients according
to the third section of the Movement Disorders Society - Unified
Parkinson’s Disease Rating Scale (MDS-UPDRS-III) to deter-
mine disease severity [24]. The recordings included in the study
were obtained by asking participants to talk about their daily
routine for approximately 90 seconds. Transliterations of the
recordings were generated using the Amazon transcribe service.
Table 1 contains additional information about the speakers.

2.2. Methodology

Figure 1 summarizes the methodology proposed in this work,
where speech and language are processed independently to clas-
sify PD patients and HCs. In the speech approach, we con-
sidered representations obtained using Wav2Vec 2.0 model and

Table 1: Clinical and demographic information of the subjects.
[F/M]: Female/Male.

PD patients HC subjects
Gender∗ [F/M] 38/42 43/42
Age∗∗ [F/M] 63.7±7.3/64.5±10.2 60.9±8.2/64.8±10.5
Range of age [F/M] 51–81/45–86 49–83/42–86
MDS-UPDRS-III [F/M] 34.6±19.9/38.5±19.6
Range of MDS-UPDRS-III [F/M] 9–106/7–92

∗Gender matching between PD and HC subjects with a p–value=0.81 calculated
through a Chi–square test. ∗∗Age matching between PD and HC subjects with a
p–value=0.38 calculated through a t-test. Values as mean ± standard deviation.

representations based on speech dimensions such as prosody,
articulation, and phonemic information. In the language ap-
proach, we use a state-of-the-art word-embedding model called
BETO to get a numerical representation from each word; these
embeddings are analyzed using statistical functionals and a
strategy where a 1D-CNN analyzes only verbs and nouns from
each transcription. Then, the best representations from each
modality are used to set a multimodal approach, where both in-
formation sources are combined. The combination is developed
using two strategies the traditional early fusion and the fusion
based on GMUs.

2.3. Speech analysis

To get speech representations, we include two approaches, gen-
eral representations obtained from a pre-trained model called
Wav2Vec 2.0, and pathology-oriented representations to model
three speech dimensions: prosody, articulation, and phonemic
information.

2.3.1. Wav2vec

This architecture is based on transformers and it was proposed
in [25]. The main idea is to encode speech audio via a multi-
layer CNN and then mask spans of the resulting latent speech
representations, which feed a transformer network to build con-
textualized representations. In this work, we used a pre-trained
Wav2Vec 2.0 model available in Pytorch to get a speech rep-
resentation for each recording from scratch. This architecture
was pre-trained on 960 hours of unlabeled audio from the Lib-
riSpeech dataset. The temporal mean was computed to get a
final representation of 768 dimensions.

2.3.2. Speech dimensions

We computed prosody, articulation, and phonemic information
features to model the speech signals. This work defines prosody
as the variation of loudness, pitch, and timing to produce natural
speech. Articulation is defined as the spectral information ob-
tained from voiceless-to-voiced (onset) and voiced-to-voiceless
(offset) speech transitions [26]. Finally, phonemic information
features aim to evaluate phoneme precision. These features are
based on the posterior probability of a speech frame belong-
ing to one (or more) of 18 phonological classes. These features
were extracted using the Disvoice toolkit 1.

2.4. Language analysis

The BETO pre-trained model is used to obtain a numerical
representation of each word in the transcription. This word-
embedding model, which is a Spanish version of BERT pro-
posed in [27], was trained using Spanish data from Wikipedia

1https://github.com/jcvasquezc/DisVoice
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Figure 1: General methodology proposed in this study.

and all of the resources of the OPUS project [28]. The source
code required to compute BETO embeddings is available on-
line2 [29]. In order to obtain a static representation of each
transcription, two approaches are utilized: statistical functionals
and verbs and nouns analysis.

2.4.1. Statistical functionals:

We obtained a static representation of each document by com-
puting the mean, standard deviation, skewness, and kurtosis of
the word embeddings, except for the stop words; thus, each
document is represented as a 1-dimensional feature vector with
3072 elements.

2.4.2. Verbs and nouns analysis:

Given that different studies show that PD patients exhibit
severely impaired capability processing verbs, specifically ac-
tion verbs, compared to other grammatical units such as
nouns [30, 19], we proposed an approach based on 1D-CNN to
analyze the word-embeddings of both grammatical units. Ini-
tially, the word embeddings of each grammatical unit are ver-
tically concatenated in the transcription order to form a real-
valued embedding matrix Xn×d, where n is the number of
verbs or nouns in the transcription, and d is the word-embedding
dimension. Then, this embedding matrix is used to feed a 1D-
CNN, which includes three parallel filters to capture different
relationships among the words-embeddings of each grammati-
cal unit. Specifically, 2× d, 3× d, and 4× d filters are used in
the convolutional layers to analyze bi-gram, tri-gram, and four-
gram relations, respectively. Finally, a fully-conected layer is
used to classify PD and HCs. Details about this architecture
can be found in [31].

2.5. Multimodal analysis

Two fusion strategies are employed to combine the best repre-
sentations from each modality: concatenation and GMU. The
first strategy uses early fusion, concatenating both representa-
tions, and then an SVM is used as a classifier. The second
strategy involves a DL model known as GMU. This model was
proposed in [32]. The main idea is to combine early and late
fusion aspects using multiplicative gates to find an intermediate

2https://github.com/PauPerezT/WEBERT

representation based on a combination of data from different
modalities. First, the representation of each modality feeds a
fully-connected layer with an activation function tanh; then, a
gate layer with σ activation function controls the contribution of
each modality. Finally, the representation obtained is used as in-
put to a fully-connected layer, which develops the classification
using a Softmax activation function.

3. Experiments and Results

Representations of each modality are used independently to
classify PD patients and HCs. Best representations from
each modality are used to set the multimodal approach. In
experiments where an SVM was implemented, we consid-
ered Linear and Gaussian kernels, and its hyper-parameters
were optimized using a grid-search with values for C ∈
{0.001, 0.01, · · · , 100} and γ ∈ {0.0001, 0.001, · · · , 100}.
In DL models, the convolutional filter and the number of units
in the fully-connected layer were optimized using a grid search
with values of 2k with 3 ≤ k ≥ 6. In addition, we use regular-
ization strategies such as early stopping, dropout, and l2 regu-
larization. Architecture parameters are optimized upon the val-
idation loss. Finally, all experiments were developed using the
same stratified k-fold cross-validation strategy with 10 folds.

3.1. Speech

In the speech approach, we tested five representations:
Wav2vec, which is used as a general representation that is
not pathology-oriented and features pathology-oriented such as
prosody, articulation, phonemic information, and the combina-
tion of all of them. For the Wav2vec strategy, we performed
different segmentations of the raw signal at its input (1sec, 2sec,
5sec, and the full recording); however, we only reported the best
result, which was obtained with an input size of 2 seconds. Ta-
ble 2 summarizes the performance measures of the approaches
tested. Although the Wav2vec strategy achieved an accuracy of
79.4%, the combination of all speech dimensions shows an ac-
curacy slightly better and a balanced sensitivity and specificity.
The individual speech dimension with the highest accuracy is
the feature set related to phonemic information, which aims to
evaluate the phoneme articulation precision of the patient.
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Figure 2: Distributions for the best representation in unimodal and multimodal approaches.

Table 2: Classification between PD patients vs. HC subjects for
the uni-modal and multimodal approaches.

Accuracy Sensitivity Specificity F1-score
Speech

Wav2vec 79.4± 9.6 71.3±14.8 87.1±12.1 76.6±11.1
Prosody 77.2±12.7 70.0±19.5 83.9±11.4 73.8±15.6
Articulation 74.5± 7.7 68.8±11.5 80.0± 9.2 72.1± 8.8
Phonemic 78.2±11.7 75.0±14.8 81.3±20.2 77.0±11.5
All dim. 81.9±10.3 80.0±12.7 83.9±14.3 81.0±10.9

Language
Statistical functionals 63.1± 9.8 42.5±16.0 82.5±11.6 51.8±14.6
Nouns-CNN 73.3± 9.3 68.8±23.2 77.8±18.7 69.5±15.0
Verbs-CNN 76.4± 5.8 71.3±17.7 81.1±11.0 73.3± 9.3

Multimodal
All dim. ∥ verbs-CNN 80.7±10.3 80.0±13.9 81.1±14.9 79.9±11.1
GMU (All dim. , verbs-CNN) 87.3± 6.8 83.8±14.8 90.7±13.0 86.1± 7.5

Values reported in terms of mean ± standard deviation. ∥ denotes the concate-
nation operation. All dim: the representation obtained concatenating prosody,
articulation, and phonemic information features.

3.2. Language

In the language modality, we tested three representations: sta-
tistical functionals, Nouns+CNN, and Verbs+CNN. In this case,
statistical functionals representation is the static representation
of each document by computing the statistical functionals of the
BETO embeddings in the transcription. Representation based
on statistical functionals is used as the general language repre-
sentation that is not pathology-oriented. Noun-CNN and Verbs-
CNN are the two representations obtained when the 1D-CNN
analyzes only the nouns or verbs in the transcription, respec-
tively. Table 2 shows the performance for these representations
where the best result is obtained with Verbs+CNN representa-
tion. This result is coherent with the literature, where differ-
ent not automatic approaches have reported that PD patients
show difficulties processing verbs compared to other grammat-
ical units such as nouns [30].

3.3. Multimodal

The best speech and language representations are combined us-
ing two fusion strategies: traditional early fusion and fusion
based on GMU. In traditional early fusion, representations of
each modality are concatenated to feed an SVM classifier. In
GMU-based fusion, a DL model learns an intermediate repre-
sentation based on both modalities’ information. Table 2 shows
that GMU-based fusion outperforms traditional early fusion by
up to 7% in PD patients and HCs classification. Furthermore,
multimodal results surpass unimodal results, indicating comple-
mentary information between language and speech representa-
tions. Figure 2 shows the distribution of the scores of the best
models from each modality and for the multimodal approach
using GMUs.

4. Conclusions

This study aims to classify PD patients and HCs consider-
ing unimodal and multimodal approaches from speech and
language analysis. We consider non-pathology-oriented and
pathology-oriented representations from speech and language.
In the speech approach, we used features based on Wav2vec
and representations based on different speech dimensions, such
as prosody, articulation, and phonemic information. In the lan-
guage approach, we used BETO and proposed an approach
where verbs and nouns were analyzed using a 1D-CNN. Best
unimodal representations were used to set a multimodal ap-
proach, where two fusion strategies are evaluated: traditional
early fusion and a strategy based on GMU.
Unimodal results showed that pathology-oriented representa-
tions outperformed general representations in both speech and
language modalities. In speech modality, the best result was
obtained when all speech dimensions were concatenated, and in
language modality, the best result was achieved with the repre-
sentation obtained when the 1D-CNN analyzed only the verbs
in the transcription; accuracies of up to 81% and 76% were ob-
tained for speech and language modality, respectively. In the
multimodal, the strategy based on GMU achieved accuracies of
up to 87%, outperforming the traditional fusion strategy by up
to 7%, and in up to 6%, the best result obtained in the unimodal
approaches.
Results show that pathology-oriented representations outper-
form the general and uninterpretable representations obtained
with complex DL models. On the other hand, relevant informa-
tion about the impaired processing of verbs in PD patients was
extracted using the 1D-CNN strategy. Furthermore, results in
the language approach are consistent with other studies where
PD patients show more difficulties processing verbs than other
grammatical units such as nouns. Finally, multimodal results
suggest that combining information from speech and language
can help improve the automatic analysis of PD. The main limita-
tion of this work is that we did not consider synchronous fusion
strategies, which can be addressed by forced alignment tech-
niques. Therefore, future work will include synchronous fusion
between speech and language for automatic disease monitoring.
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