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Abstract 
In this work, we compared two different input approaches to 
estimate autism severity using speech signals. We analyzed 127 
audio recordings of young children obtained during the Autism 
Diagnostic Observation Schedule 2nd edition (ADOS-2) 
administration. Two different sets of features were extracted 
from each recording: 1) hand-crafted features, which included 
acoustic and prosodic features, and 2) log-mel spectrograms, 
which give the time-frequency representation. We examined 
two different Convolutional Neural Network (CNN) 
architectures for each of the two inputs and compared the 
autism severity estimation performance. We showed that the 
hand-crafted features yielded lower prediction error 
(normalized RMSE) in most examined configurations than the 
log-mel spectrograms. Moreover, fusing the estimated autism 
severity scores of the two feature extraction methods yielded 
the best results, where both architectures exhibited similar 
performance (Pearson R=0.66, normalized RMSE=0.24). 
Index Terms: ADOS, audio, autism, CNN, features, severity 
estimation, spectrogram. 

1. Introduction 
Many speech signal processing algorithms utilize different 
feature extraction methods; some features are more task-
specific (hand-crafted features [1], [2]), whereas others are 
more generic (e.g., spectrograms [3]). For example, Eyben et al. 
presented the openSMILE feature extraction toolkit in 2010 [4], 
which enables the extraction of audio and video features for 
signal processing and machine learning, particularly features 
enabling emotion recognition from speech. In 2016 the 
eGeMAPS was presented [5], a set of 88 acoustic features that 
can be used in various automatic voice analyses [6]. These and 
other hand-crafted features are widely used for emotion 
recognition [7] and in the quantification of speech disorders 
such as Autism Spectrum Disorder (ASD) [6], [8]–[11]. 
 Today's speech processing and recognition algorithms also 
utilize spectrograms [12], [13], the time-frequency 
representations of the audio signal. Since humans do not 
perceive frequencies linearly, the mel-scale [14] which 
approximates the frequency spacing of a human cochlea, was 
developed to produce mel-spectrograms that reflect the 
frequency bands perceived by the human ear [7].  
 In this study, we explore the influence of these two feature 
extraction methods (i.e., hand-crafted and mel-spectrograms) 
on the ASD severity estimation system. ASD is a 
neurodevelopmental disorder characterized by speech 
disorders, including high pitch frequency, greater pitch 
inconsistencies, echolalia (speech repetition), and the 
generation of more distressed vocalizations [15], such as crying 

and screaming. The severity and manifestation of ASD 
symptoms can vary widely among individuals, but common 
characteristics of ASD include difficulties with social 
interaction, communication, and repetitive and restricted 
patterns of behavior, interests, or activities [16]. One of the 
most widely used observational tools for the assessment of ASD 
in children is the Autism Diagnostic Observation Schedule 2nd 
edition (ADOS-2) [17], which is based on DSM-5 criteria [18] 
and is currently considered the gold standard for identifying 
individuals with ASD. An ADOS session lasts 40-60 min. The 
total clinician-rated scores range from 0-30, with higher scores 
indicating more severe symptoms. 
 In our previous work, we extracted a group of 48 hand-
crafted acoustic and conversational features from children's 
speech [19]. Our findings showed that these features could be 
used to estimate the severity of core ASD symptoms using a 
Convolutional Neural Network (CNN) architecture that was 
trained on 56 audio recordings. L. Nanni et al. [20] compared 
hand-crafted features and features extracted by deep CNN, and 
examined their combination for different image classification 
tasks. Their experiments showed that the fusion of different 
feature extraction methods outperforms the standard 
approaches. Similar conclusions were obtained in voice 
pathology detection [21] and  in speech emotion recognition 
[22]. Based on these findings, we hypothesize that each feature 
extraction method may capture information that is less 
expressed by the other method. Therefore, the fusion between 
the two methods may give a better representation of ASD 
children’s speech.  
 The main goal of this study was to provide a comparison 
between two feature extraction methods, and their combination, 
for estimating autism severity from speech recordings. We 
developed a DNN-based ASD severity estimation system 
combining hand-crafted features and spectrograms. We 
examined two different CNN architectures for each input and 
compared the autism severity estimation performance. The 
proposed system provides a robust, effective, and non-invasive 
method for estimating ASD severity in young children. 

2. Dataset  
We analyzed speech recordings from ADOS-2 assessments 
taken from ASD diagnoses. Audio recordings of 127 children, 
aged 4.09±1.31 years (see data specifications in Table 1), were 
selected from the Azrieli National Centre for Autism and 
Neurodevelopment Research (www.autismisrael.org). During 
the ADOS-2 assessments, the children were recorded using a 
distant microphone (CHM99, AKG, Vienna, Austria), placed 
approximately one meter from the child, thus allowing the child 
to move freely around the room. The language level of the 
children who participated in this study ranged from toddlers 
who are not verbally fluent to children with fluent speech. The 
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study was approved by the SUMC Ethics committee and 
parents of all participating toddlers provided written informed 
consent. All research was performed in accordance with the 
guidelines and regulations of the Helsinki committee. The audio 
sampling rate was 44.1 kHz (16 bits per sample), which was 
then downsampled to 16 kHz. The overall duration of the 
speech recordings was 41.76±11.49 min ([19.80, 77.36] min).  

Table 1: Children's demographics. Mean (std) 

#Children ADOS score Age (y) Boys (%)
All 12.57 (7.52) 4.09 (1.31) 79

ASD (77%) 15.43 (5.83) 4.17 (1.26) 79
Not-ASD (23%) 2.29 (3.36) 3.82 (1.45) 79

3. Proposed approach 
In this study, we propose several feature-extraction methods 
and system configurations for estimating ASD severity (total 
ADOS scores). The total ADOS score is composed of the 
assessment of the social communication impairments and 
restricted and repetitive patterns of behavior. Our proposed 
estimation system can be divided into several modules (Figure 
1): 1) audio database acquisition, 2) child vocalization detection 
and segmentation, 3) feature extraction, which includes the 
hand-crafted features and the log-mel spectrograms, and 4) 
ASD severity estimation using two different architectures: 
CNN1D and SLINet. We examined several system 
configurations of the feature-sets / vocalization-durations / 
architectures and observed their impact on estimating the ASD 
severity scores.  

3.1. Detection of child vocalizations  

The audio dataset was manually segmented and labeled for 
different speakers using an in-house labeling Graphical User 
Interface (GUI). For this study, we only focused on child-
labeled audio segments. Detection of child vocalizations from 
the labeled segments, separated by silence, was then applied. 
The algorithm uses energy and energy thresholds to detect the 
start and end of each vocalization [19]. These vocalizations may 
include speech, crying, screaming, and other vocalic events. 
Since too short vocalizations may not contain enough 
information, in the current study, we used a vocalization 
duration threshold; vocalizations shorter than this threshold 
were excluded. Several duration threshold values were 
examined: 110/200/500 ms. The maximum duration was not 
limited.  

3.2. Feature extraction 

Two feature extraction methods for estimating ASD severity 
score were implemented and tested. For this purpose, we 
extracted both the hand-crafted features and spectrograms from 
each recording.  

3.2.1. Hand-crafted features  

Here we utilized ASD-related features, similar to [19]. From 
each detected vocalization, we extracted nine types of features 
(see Table 2). Next, we selected sub-groups of 10 consecutive 
vocalizations of the child and computed a variety of statistics 
from their features (e.g., mean, standard deviation) in order to 
capture distributional changes. This derived a feature vector of 
49 features for the selected sub-group of vocalizations. We 
performed this procedure 100 times, selecting random sub- 

 
Figure 1: Block diagram of the ASD severity estimation system. 
Two feature extraction methods (hand-crafted: Feat, log-mel 
spectrograms: Spec) were compared along with two CNN 
architectures (CNN1D and SLINet). In overall, five models were 
derived: FeatCNN1D, SpecCNN1D, SpecSLINet, FeatCNN1D 
+SpecCNN1D, and FeatCNN1D +SpecSLINet. 

Table 2: List of hand-crafted features. 

 Feature type Statistics Size 

1 Pitch , 0, max F0min Fμ, /2σ, 2μ, σ
VC/UV 

10 

2 Formants & 
Bandwidths μ, σ2, F1, F2, | F1- F2|, BW1, BW2 10 

3 Voicing μ, σ2 2
4 Energy μ, σ2, E, ∆E. ∆∆E, |∆E| 8

5 Spectral slope μ, σ2, [20,500] Hz, [500,1500] 
Hz, VC/UV 8 

6 ZCR μ, σ2, VC/UV 6
7 Jitter μ, σ2 2
8 Duration μ, σ2 2
9 Quantity #Vocalizations 1

VC: voiced vocalization (pitch defined in most frames), UV: unvoiced 
vocalization, F0: fundamental frequency, BW: bandwidth, ZCR: Zero-
Crossing Rate, Size: number of features. 

-groups of sequential vocalizations from each recording. We 
combined the 100 feature vectors into a single feature matrix, 
yielding an input matrix of 100×49, one matrix per child. 
Because of the randomness of vocalization selection in each 
sub-group, we ran the feature extraction five times for each 
recording, estimated the severity score for each feature matrix, 
and calculated the mean value for each recording.  

3.2.2. Log-Mel spectrograms 

For each detected vocalization, we generated log-mel 
spectrograms. Since the majority (78%) of the vocalizations 
ranged from 0.03s to 1s, the child's vocalizations were set to a 
fixed length of 1 s either by trimming or zero-padding. The 
remainder of the trimmed vocalization was discarded if its 
length was below the defined minimum duration threshold 
(110/200/500 ms). The one-sec vocalizations were converted to 
mel-spectrograms using the Python Librosa 0.9.2 library. The 
mel-spectrograms were calculated using 40 mel filters with a 
Hann window size of 40 ms with an overlap of 20 ms. Next, the 
mel-spectrograms were dB-scaled to generate the log-mel 
spectrograms, which were then used as input to the network. 
 Since the number of the vocalizations could differ, during 
model training all the spectrograms, of each individual child's 
recording, were assigned the same ADOS score as the entire 
audio label, i.e., the score reported by the clinician during the 
ADOS assessment (the actual ADOS score). The final ADOS 
score predicted by our approach was thus the average of the 
predicted score values of all the spectrograms for the audio 
recording. 
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3.3. Architectures 

We compared two different CNN architectures (see Figure 2) 
to estimate the ASD severity score, as expressed in the total 
ADOS score: 
The CNN1D: a CNN architecture proposed in [19] and is based 
on one-dimensional convolutional layers. This network takes as 
input the feature matrix of a recording, or a spectrogram of a 1 
sec vocalization, and returns the predicted/estimated ADOS 
score. The architecture is built out of seven hidden layers, with 
ReLU activation function, and one output layer with a linear 
activation. The two dropout layers randomly set input units to 0 
with a frequency of 0.5 at each step during training time.  
The SLINet: a CNN architecture proposed by M. Kaushik et 
al. [23], especially for the detection of Specific Language 
Impairment (SLI) from audio recordings of children aged 6-12. 
Children with SLI and those diagnosed with ASD share the 
common feature of poor spoken communication skills [24]. 
Delays and deficits in language are generally among the first 
symptoms of the autistic condition and are the core features of 
SLI. In addition to similarities in language impairments, this 
detection algorithm has successfully classified children with 
SLI. Thus, we retrained the SLINet CNN architecture on our 
ASD database and used it on the spectrogram feature extraction 
method alone. The SLINet network is based on two-
dimensional convolutional layers with ReLU activation 
function and includes 3 dropout layers with drop rates of 0.2, 
0.4, and 0.5, respectively. Since our goal was to estimate a 
severity score, we changed the output layer from a dense layer 
with a Softmax activation function with two output neurons, 
which was used for the classification task, to a linear activation 
function with one output neuron that used for the regression 
task.  

In addition to each model, we also examined fusing the 
two methods, "Feat+Spec", by averaging the two predicted 
scores of each child. See the network’s initialization method 
and the total number of parameters in Table 3. 

 
Figure 2: The examined architectures for ASD severity score 
(ADOS) estimation: (a) SLINet; (b) CNN1D. BN stands for 
Batch Normalization, 'k' for kernel size, 'f' for filters, 'p' for 
pooling size, and 's' for strides. 

3.4. Training  

The two model architectures were trained using the RMSprop 
(Root Mean Square Propagation) optimizer [25] with mean 
squared error (MSE) loss function and validated with 5-fold 
cross-validation for multiple epochs. The models were 
implemented in Python 3.8 using TensorFlow’s Keras API 
2.4.1. The training was conducted on a server with NVIDIA 

A40 GPU. The whole feature extraction-training-testing 
process took up to three days. Early stopping was applied to 
prevent overfitting of the model; hence the number of epochs 
was different for every fold, and the best-performing model 
with the highest Pearson correlation between the predicted and 
actual scores for entire recordings, was retained. For each fold, 
in order to identify the optimal model, we used a random search 
algorithm with 5-fold cross-validation and optimized three 
hyperparameters: batch size (25 - 29), learning rate (10-4 - 10-1), 
and number of epochs ([10, 2000]). We trained the spectrogram 
models for 500 iterations (to save run time) and applied early 
stopping if there was no improvement on the validation set for 
ten epochs. The chosen parameters for each model in each fold 
are described in the Supplementary material. 

Performance was evaluated using the Normalized Root 
Mean Square Error (NRMSE, (1)) and the Pearson correlation 
coefficient, R, between the actual and the estimated/predicted 
ADOS scores.  

 

  (1) 

where RMSE stands for the Root Mean Square Error, and yactual 
for the actual/observed severity scores of the children in the 
training dataset, as derived by the clinician during the ADOS 
assessment. 

Table 3: Networks characteristics 

Network 
architecture 

Weights 
initialization 

Biases 
initialization 

Total number of 
parameters 

CNN1D Uniform Zeros Feat: 1,190,785 
Spec: 1,189,761

SLINet Xavier Zeros Spec: 568,897

4. Results 
Five system configurations for ASD severity estimation were 
tested: 1) Log-mel spectrograms using SLINet (SpecSLINet), 2) 
Log-mel spectrograms using CNN1D (SpecCNN1D), 3) Hand-
crafted features using CNN1D (FeatCNN1D), 4) Fusion between 
the two extraction methods where the spectrograms were 
trained using the SLINet (FeatCNN1D + SpecSLINet), and 5) Fusion 
between the two extraction methods where the spectrograms 
were trained using the CNN1D (FeatCNN1D + SpecCNN1D).  
Figure 3 shows the performance measures (Pearson correlation 
and NRMSE) of the five systems. 

Of the three vocalization duration thresholds, 200 ms 
achieved the best performance in most configurations, as shown 
in Figure 3. Table 4 shows the ASD severity estimation 
performances for the five different systems configurations for 
vocalizations longer than 200ms. Here, the performance 
measures are shown as the mean values and standard deviation 
among the five folds. In the case of hand-crafted features, the 
mean was also calculated across the five random feature 
matrices extracted for each recording. These results show that 
the fusion between the predicted severity scores of the hand-
crafted feature extraction method and the predicted scores of 
the log-mel spectrograms achieved the highest performance (R 
= 0.66, NRMSE = 0.24).  

5. Discussion 
In this study, we analyzed speech signals of young Hebrew-
speaking children recorded during their ADOS assessments. As 
our primary goal, we compared the performance of handcrafted 
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features and log-mel spectrograms to estimate the ASD severity 
scores. Our findings showed that the hand-crafted features 
performed better in most configurations than the log-mel 
spectrograms, deriving lower prediction error. However, the 
fusion between the two methods achieved the best performance. 
Both fused networks evidenced similar performance when 
comparing the SLINet and the authors proposed CNN1D 
architecture. These results suggest that the network that was 
initially proposed to classify children with SLI may also be 
suitable for diagnosing children with autism at different levels.   

Analysis of child vocalizations showed that using 
vocalizations longer than 200 ms contributed to better 
performance of the ASD estimation system. Further statistical 
analysis of the demographic characteristics of children revealed 
no statistical difference in prediction of the ADOS score 
between boys and girls using the spectrogram extraction 
method. However, the analysis demonstrated a superior 
outcome in R-value for children exceeding the median age as 
compared to those in the younger cohort using the FeatCNN1D 
model. 

In an additional comparison, we extracted a feature vector 
of 88 eGeMAPS features [5] from each child vocalization using 
the Python openSMILE toolkit. This set of features was initially 
proposed as a simple acoustic parameter set for automated voice 
analysis in paralinguistic or clinical settings. We used a 
multilayer perceptron neural network with three fully connected 
hidden layers with 128, 64, and 32 nodes. The highest results 
using eGeMAPS were derived using the 110 ms minimum 
vocalization length, resulting in mean R of 0.569±0.100 and 
NRMSE of 0.271±0.016. In contrast, the fusion of 
spectrograms and hand-crafted features achieved better results 
than eGeMAPS. 

Finally, we examined the effect of a mel-scale, and 
replaced the log-mel spectrograms with ordinary linear 
spectrograms, generated with 512 FFT points. We trained the 
two described architectures while limiting the min vocalization 
length to 200 ms. In this experiment, the linear spectrograms 
had higher prediction error than the log-mel spectrograms, 
deriving; 1) CNN1D: R = 0.40±0.16, NRMSE = 0.28±0.02, and 
2) SLINet: R = 0.56±0.06, NRMSE = 0.26±0.02. These results 
underscore the advantages of the mel-scale when processing 
speech signals of children for autism estimation. 

The current study has a few strengths and limitations. First, 
we analyzed a relatively large sample size of young children 

(age 1-7 years) diagnosed with ASD; some were minimally 
verbal, and some spoke fluently. As far as we know, this 
collected data is one of the largest speech databases of children 
with autism this age, specifically Hebrew-speaking children. 
One potential limitation of this study is the exclusive testing of 
our system on Hebrew language. Nevertheless, the utilization 
of prosodic features offers a potential pathway for overcoming 
this constraint. Recordings of the children's speech were 
acquired utilizing a remote microphone, allowing them greater 
freedom of movement within the recording room; moreover, a 
wearable microphone can distract the child and interfere with 
diagnostic process [26]. However, the signal to noise ratio of 
the acquired signal from a remote microphone is lower than a 
wearable microphone and may bias ASD severity estimation.  

Table 4: ASD severity estimation performances of the five 
system configurations - for vocalizations longer than 200ms. 

Feature type System 
configuration

R 
µ±σ (median) 

NRMSE 
µ±σ (median) 

Log-mel 
spectrograms

SpecSLINet 0.665 ± 0.117 
 (0.626) 

0.263 ± 0.022 
(0.257)

SpecCNN1D 0.642 ± 0.093 
(0.670) 

0.260 ± 0.013 
(0.258)

Hand-crafted 
features FeatCNN1D 0.614 ± 0.089 

(0.625) 
0.240 ± 0.017 

(0.236)

Fusion 
(Feat+Spec) 

FeatCNN1D + 
SpecSLINet

0.663 ± 0.081 
(0.656) 

0.236 ± 0.011 
(0.239)

FeatCNN1D + 
SpecCNN1D

0.657 ± 0.069 
(0.672) 

0.237 ± 0.010 
(0.234)

6. Conclusions 
This study provides valuable insights into the use of hand-
crafted features and log-mel spectrograms for estimating ASD 
severity scores in young Hebrew-speaking children. Our 
findings highlight the potential for a fusion of these two 
methods to achieve the best performance. This speech analysis 
algorithm could be highly valuable in evaluating early ASD risk 
and as a unique outcome measure for quantifying ASD severity, 
providing beneficial clinical utility. 
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Figure 3: ASD severity estimation system performance of different system configurations. The metrics: (a) Pearson correlation R, and 
(b) Normalized Root Mean Squared Error (NRMSE) were calculated between the predicted and the actual ASD severity scores. Each 
dot (marker) represents an iteration from 5-folds cross validation. Marker types indicate 5 different system configurations, while 
horizontal black lines represent the average value across the 5-folds. 
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