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Abstract
Domain-informed probing of large speech recognition
transformer-based models offers an opportunity to investigate
how phonetic information is captured and transformed in
the information-rich embeddings that emerge as part of the
recognition process. Previous work in this area has established
the efficacy of probing these embeddings with simple multi-
layer perceptron models to identify the information patterns
encoded at each layer of the transformer. This paper explores
phonetic feature event patterns which evolve at each layer of a
transformer model. Probing models are trained with phonetic
embeddings, which are averaged and labelled at the phone
level using the TIMIT dataset, to detect the presence of certain
phonetic features in time-steps of a speech signal. This paper
demonstrates how the detection of phonetic features within the
embeddings of transformer models, such as voicing, frication
and nasal, provides insights in relation to the encoding of
speech patterns in these models.
Index Terms: phonetics, phonology, embeddings, transformers

1. Introduction
The development of large transformer models which are trained
on large corpora of unlabelled data has seen significant im-
provement in standardised performance metrics such as word
error rate (WER). These models generate internal vector rep-
resentations (embeddings) of their inputs as part of their oper-
ation. There is a growing body of work exploring what types
of information are encoded in the latent embeddings created by
transformer models. One methodology for analysing these em-
beddings is known as probing. The intuition underlying probing
is that if you can train a simple classifier to accurately predict
from a transformer embedding of an input whether a feature
was present in the input, then this provides evidence that the
transformer model encodes information about this feature in its
embeddings.

The internal processes of these transformer models remains
an active area of investigation, with particular attention given
to the remaining errors made by models of this architecture [1].
At present, full operation of an automatic speech recognition
(ASR) transformer will typically output a token in a provided
character set (graphemes, phonetic symbols, etc.) with errors
only indicated through incorrect token predictions. However,
while speech may be represented in terms of discrete segments,
speech production is a continuous process, during which certain
phonetic features may be present and overlap in time. [2].

The goal of this paper is to better understand how ASR
transformer models process speech, with a particular focus on
whether phonetic features (such as voicing, frication and nasal)
are encoded in the embeddings generated by these models. Fur-

thermore, given that transformer models typically include mul-
tiple layers of processing between the input and the output, we
wish to analyse the evolution of the information encoded in
these embeddings across the layers of the architectures. Identi-
fying whether these features are present in the embeddings and,
if they are, how the representations of these features emerge
and evolve across the layers of these models may be useful, not
only in terms of improving the performance of these models
but also in providing a data-driven insight into how speech is
recognised (e.g. which feature patterns emerge earlier from the
data). Inspired by the probing methodology developed in natu-
ral language processing (NLP) to analyse text (word, sentence)
embeddings, in this paper we adapt the probing methodology
to apply it to speech embeddings. A key challenge in applying
probing to speech is that speech is a continuous signal. Probing,
however, assumes that the input is in discrete segments and that
each input segment can be labelled as having the target features
present or not. It is this labelling of segments that enables the
training of the probes (the classifiers models) to predict from
an embedding whether a target feature was present in the cor-
responding input segment. We use the information-rich embed-
dings of wav2vec 2.0 [3], which each represent a discrete time-
step in an input signal, as our method of discretely representing
speech.

The remainder of this paper is structured as follows: Sec-
tion 2 outlines some recent work in this area that relates to our
methodology. Section 3 describes the materials used followed
by a description of the probing methodology in Section 4. Sec-
tion 5 presents the results of the probing task and visualisations
of some sample probe outputs. Section 6 concludes with some
future work.

2. Related Work
2.1. Information Capture in Embeddings

In recent years there has been considerable interest in the prac-
tice of exploring neural embeddings of spoken language to iden-
tify the nature of information encoded within the embedding
space of a given model. Such tasks typically require the intro-
duction of a known supervision signal to allow for the relation
of embeddings to the signal they represent. [4] used a synthetic
language as the basis for evaluation, finding that contrastive el-
ements identified in the embeddings examined could be related
to articulatory features. Similarly, [5] used word2vec to create
phoneme embeddings in order to investigate the extent to which
similarity between the phonemes of English are influenced by
distributional properties.

The embeddings generated by larger neural networks have
also been explored on the basis that their complex architec-
tures may be capable of more accurately encoding information
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found in an input signal than previous simpler models. [6]
used an end-to-end ASR model to generate embeddings that
were then explored to identify the categories of information
captured. They noted that high-level aspects of the speech sig-
nal such as sound classes were identifiable in the embeddings
generated, but reported much lower accuracy when consider-
ing more granular information such as phone label. [7] used a
3-layer model trained to differentiate between consonants and
vowels. They conducted a domain-informed analysis of princi-
pal component analysis (PCA)-transformed embedding spaces,
and their results were indicative of significant grouping based
on vowel/consonant categorization and articulation style.

With the development of the transformer architecture [8],
a high level of information capture has been identified in
the speech embeddings of transformers trained on very large
datasets of unlabelled data. Of particular relevance are the find-
ings of [9], which probed non-averaged frames for a variety of
features. They noted that evaluation performance fell as the
granularity of phonetic knowledge required for distinction grew,
with phone classification seeing the worst performance, but re-
ported that high-level classification such as sonorance could be
accurately identified within embeddings generated by a number
of large transformer models.

2.2. Embedding Probes and Exploration

The probing methodology proposed by [10] has seen
widespread use in exploring information capture within neural
model embeddings. Probing involves the training of a classi-
fier to identify the presence of an underlying feature (sentence
properties such as length, parse tree depth etc.) within embed-
ded representations of the signal. The performance of the probe
with respect to classification accuracy is assumed to correlate
with information capture in the embedding space. A number
of works ([11, 12, 13, 14]) have made use of this methodology
across a number of domains to associate embedded representa-
tions with feature occurrence to good effect. Similar work has
been undertaken to identify layer-wise information capture in
transformer embeddings, with the work of [15] identifying dif-
ferent levels of performance across layers with respect to feature
identification.

[16] proposed an averaging method to identify wide capture
of features within a number of large-transformer embedding
spaces, including wav2vec2.0. As will be seen in Section 4.1,
we adapt this averaging methodology as the basis for the data
generation step in Section 4.1. Most recently, [17] proposed a
method of knowledge exploration by which embedding spaces
were explored for implicit knowledge capture within Large Lan-
guage Models which found that binary contrastive inputs can be
used effectively to explore the structure of the activations of a
model, avoiding confounding factors in final model output.

3. Materials
3.1. TIMIT

The TIMIT read-speech corpus [18] was used for this task as
it contains the timings for each of the phones in the set of ut-
terances. This dataset contains 5.4 hours of 16 kHz spoken
American-accented English audio in wav format. 8 US En-
glish dialects are represented in the dataset, with each speaker
having 10 utterances. Each utterance is accompanied by a meta-
data file containing human-annotated phonetic and orthographic
transcriptions and timings. The entire TIMIT dataset was used,
with the TIMIT suggested training/test split.

3.2. wav2vec 2.0

The transformer architecture used for this task is the
”base 960”1 variant of the wav2vec 2.0 ASR model This model
is comprised of the following components:

• a 1-D convolutional neural network, which takes a raw
audio waveform W and outputs a latent speech represen-
tation, which is then processed by the transformer com-
ponent.

• a 12-layer transformer module with an internal dimen-
sion of 768 and 8 attention heads which outputs contex-
tual representation C.

• a language modelling head which divides output into a
pre-selected vocabulary of 32 characters (English char-
acters and a number of separators). The output of this
layer is the transcription of the speech signal.

For the purposes of this paper, the embeddings of the trans-
former module for each of the 13 layers and the output of the
CNN (layer 0), were examined; the language-modelling head
was not used.

4. Experimental Methodology
4.1. Data Generation

Firstly we generated wav2vec 2.0 embeddings for each wav
file in the TIMIT training and test datasets. This was done by
running the wav2vec 2.0 model in its default configuration to
get the embeddings for each transformer layer with the out-
put hidden states=True parameter. As output, a [13*N*768]
tensor was returned for each wav file (12 layers, with the ad-
ditional layer 0 representing the output of the CNN), where N is
the number of 25ms frames with 20ms stride and is dependent
on the duration of the wav file. Each [1*768] representation
is a time-step representation, corresponding to an slice of the
speech signal This yielded the a dataset of time-step representa-
tions for each layer. In contrast to similar explorations of other
large models [6], the representations for each layer are of the
same dimensionality.

To associate each of the [1*768] time-step representations
(one per 25ms of speech with 20ms stride, per layer - the
wav2vec 2.0 model was pre-trained with these timings) with
a phone label, the time-aligned annotations from the TIMIT
dataset was used. A mapping was generated by comparing
the relative position of each time-step representation in the
[N*768] sequence, calculating the time-step represented by that
embedding, and selecting the corresponding phone label for
that point in time in the TIMIT annotation. At this point, the
[258040*768] time-step samples derived from the TIMIT test
set were set aside for the evaluation of the probes described in
Section 4.2 below.

Figure 1: Sample phone-averaging process

1https://huggingface.co/facebook/wav2vec2-base-960h
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For the samples generated from the TIMIT training set, us-
ing a modification of the method outlined in [16], the numeric
values of all the embeddings occurring during a specific phone
in the wav file were averaged to create phone-averaged repre-
sentations and labelled with that phone as shown in Figure 1.
This yielded 13 new datasets, one per layer, of 175232 phone-
averaged representations.

Each phone-averaged representation in the 13 datasets was
then annotated with feature labels based on a direct mapping
from the phone labels, with a label added for each of the 3 cho-
sen features (frication, nasal, voicing), to be used as input to the
probing task. The 258040 time-step representations from the
TIMIT test set were also labelled using the same method.

4.2. Probing Task

For the probing task, 39 MLP models (3 features, 13 layers)
were trained to predict feature presence from the masked phone-
averaged wav2vec 2.0 embeddings. The scikit-learn [19] im-
plementation of the MLP was used, with 1 hidden layer of 200
ReLu activation neurons, and a single output neuron with lo-
gistic activation function. With the exception of the expanded
hidden layer size of 200, all default scikit-learn hyperparame-
ters were used.

Each MLP was trained on the phone-averaged representa-
tions of a given layer, and provided with the feature-presence
label as a supervision signal. The training dataset for each
model was the 175232 samples extracted from the TIMIT train-
ing dataset above. The 258040 samples generated from the
TIMIT test dataset were reserved for model evaluation. Each
model was trained on the [[175232]*768] representations of
each layer, and provided with the [[175232]*1] feature presence
labels (e.g. voicing - present/not present) as target category.

As the dimensionality of the time-step and phone-averaged
representations are equivalent, it was then possible to use the
probing models trained above to predict feature presence in
time-steps based on patterns learned from the phone-averaged
embeddings.

In order to ensure that probe performance was reflective of
information relevant to the task, and not chance correlation, we
created a separate set of randomly generated datasets to fol-
low best practice [20]. These datasets were copies of the orig-
inal training data, but with each feature column replaced by
random values from within the feature column range. The 39
probes trained on these datasets were unable to effectively pre-
dict features in the training dataset, and were close to the ran-
dom chance baseline on average.

4.2.1. Layer-Wise Feature-Detection Performance

Each model was evaluated with the [258040*768] test data,
with feature-presence labels removed. Each probe was tested
on the dataset from the layer that generated the training data
for that probe. For each model, a set of [258040*1] feature-
presence predictions were generated. From the above output,
average accuracies per layer/feature were calculated.

4.2.2. Feature Detection in Time-Step Representations

In order to further investigate the feature detection of the MLP
probes, we ran the probes on some sample utterances from
the TIMIT dataset. These utterances were processed by the
wav2vec 2.0 model in the same configuration as Section 4.1
to generate [13*N*768] outputs, where N is relative to the du-
ration of the wav file. These are time-step representations.

For each layer in the output, the respective model/layer
MLP was provided with the [N*768] representation of the time-
step, returning an [N*1] array of binary feature presence predic-
tions. These were then collated to generate an [Layer*N*1] ma-
trix of layer-wise feature detections, which are discussed in Sec-
tion 5.2. The outputs were then assessed to identify whether the
time-step feature-presence predictions accorded with knowl-
edge of feature presence in the respective time-steps.

5. Results and Discussion
5.1. Layer-Wise Feature-Detection Accuracies

Figure 2 presents the layer-wise accuracy scores for the voic-
ing, frication and nasal features. The test samples were masked
using the method described in Section 4.2.

Figure 2: Average feature label accuracies per layer

Although accuracy is high overall, on both the voicing and
nasal features the probe trained on the layer 8 embeddings
achieved the best accuracy, whereas layer 6 is the highest-
performing layer for frication detection. All feature-detection
accuracies see some fall-off at layer 12. The decline seen in
our results is potentially a result of the final layer embeddings
being fine-tuned for the transcription task. This aligns with pre-
vious work e.g. [6] which noted an accuracy fall off in final
layers in a similar task. An exploration of word embeddings
within another transformer architecture [13] reported that the
self-attention mechanism had resulted in a change in informa-
tion encoded by the final layer to include significant amounts
of contextual information in addition to token-specific informa-
tion. We also note that there is some loss of information be-
tween the human-annotated phones in TIMIT and feature pres-
ence in a time-step, so these accuracies are only a partial re-
flection of model performance, which will be further examined
with a sample utterance in the next section.

5.2. Feature Detection

For the purposes of illustration, a section of a sample TIMIT ut-
terance, ”This is known as conformational entropy”, was cho-
sen to look more closely at feature detection at each probing
layer. Specifically the section of the word conformational,
which is highlighted in bold, contains the voiced, nasal and
fricative phones.

5.2.1. Nasal, Voicing and Frication Features

Figure 3 displays the layer-wise detection of feature presence
within the section of the word conformational. The top row
indicates the TIMIT phone annotation for the respective time-
step, which can be seen on the x-axis. Features are colour-
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Figure 3: Layer-wise detection of the 3 features in time-step representations of the section of the word ”conformational”

coded based on detection in that time-step. Figure 3A depicts
the layer-wise detection of nasal feature presence in blue. The
presence of voicing can be seen in yellow in Figure 3B and
the presence of frication is represented in red in Figure 3C. We
note that the features tend to occur consistently within, and ad-
jacent to, the time-steps where the human annotation indicated
the presence of these features.

5.2.2. Other Insights

Figure 4: Co-occurrence of nasal and frication features

Figure 3D displays the detection of all three features across the
same section of the word with green indicating the overlap of
voicing and nasal and orange indicating the overlap of voicing
and frication. Of interest here is the clear differentiation be-
tween the nasal and frication features. While, as expected, the
voicing and nasal features, and the voicing and frication fea-
tures do co-occur, the nasal and frication features do not overlap
within a time-step. As the models predicting these features were
trained independently, it is interesting that the probes appear to
have identified that these features would be regarded as mutu-
ally exclusive as they are both manners of articulation. We ex-
plored this further by generating probe outputs for the 1680 wav
files in the TIMIT test dataset. We observed that co-occurrence
of the nasal and frication features was detected in 467 files. Fig-
ure 4 shows how many times per layer co-occurrence of nasal
and frication was detected in these 467 utterances, with the least
number, 12, occurring in layer 9. This layer is close to where
the best accuracies were identified for the individual probes in

Figure 2. The majority of these 12 co-occurrences were found
to be cases where the nasal and fricative phones were in close
proximity in the utterances.

This apparent constraint on co-occurrence of manner of ar-
ticulation features is of particular interest for future work. Here
the focus will be on a more comprehensive detection of all
phonetic features to identify whether it is possible to automat-
ically construct multi-tiered representations from the embed-
dings with a consistent feature geometry and where mutually
exclusive features are represented on the same tier.

6. Conclusions and Future Work
This paper has demonstrated how the detection of phonetic fea-
tures, such as voicing, frication and nasal, within the embed-
dings of transformer models, can provide insights in relation
to the encoding of speech patterns in these models. We have
demonstrated that phone-averaged representations may be used
to train probes which are capable of identifying patterns of fea-
ture presence in time-step representations. We also found that
the outputs of these probes, trained independently, appear to
capture some constraints on feature co-occurrence. Future work
will expand this approach to encompass a wider range of pho-
netic features with the goal of identifying whether the emer-
gence of the feature patterns are coherent with theories such as
multilinear phonology and feature geometry.
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