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Abstract
This paper presents a computational implementation of pho-
netic planning which consists of choosing the position of ar-
ticulatory targets which satisfy conflicting linguistic and extra-
linguistic requirements. We present a minimal model that con-
siders intelligibility and least effort as task requirements. To
achieve the context-dependent variability of targets, our model
approximates intelligibility as a function of target phoneme
recognition probability given a vector of articulatory parame-
ters. Preliminary experiments show that our minimal computa-
tional model of phonetic planning is able to predict two types
of hypoarticulation by adjusting the weight assigned to effort:
vowel centralization and stop consonant lenition.
Index Terms: Speech production, Articulatory planning, Opti-
mal Control Theory, Lenition

1. Introduction
Many attempts have been made to build a model of speech pro-
duction that predicts speech articulatory movements (e.g. [1–
4]). One dominant model is Articulatory Phonology/Task dy-
namics (AP/TD) [1, 5, 6]. AP/TD assumes that speech articula-
tory movements follow a gestural score which defines the acti-
vation time of pre-defined gestures that creates speech sounds.
During the activation of a gesture, articulators move such that
the timecourse of tract variables (i.e., constriction degree and/or
location) tend asymptotically toward a invariant target, fol-
lowing the second-order equation of movements of critically
damped oscillators. This approach has been coupled with Opti-
mal Control Theory (OCT) [7, 8] in Embodied Task Dynamics
(ETD) [3], where the gestural score and the gestural stiffness are
chosen such that they optimize a multi-factor objective function.

Recently, Turk and Shattuck-Huffnagel [4, 9] proposed
XT/3C, a phonology-extrinsic-timing, 3-component model of
speech production that differs from AP/TD in several key re-
spects. For example, XT/3C has separate Phonological and
Phonetic stages. In the Phonological planning stage, task re-
quirements are prioritized and qualitative acoustic cues are cho-
sen for each contrastive element as appropriate to its context. In
Phonetic Planning, articulatory trajectories that produce desired
acoustic cues are planned according to the equations of Lee’s
Tau theory [10]. This dynamic articulatory model is an inter-
polation function that generates the timecourse of movements
which close a gap in a given duration. Unlike the task-dynamics
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model, which uses asymptotic target positions, Tau theory as-
sumes that targets are reached, and that they are reached at an
explicitly targeted endpoint time. As a consequence, XT/3C as-
sumes that some of the variation in speech is due to variability
in the time and position of targets, as opposed to the undershoot
of invariant targets. The choice of these targets is done via an
OCT-based optimization.

Since, to the best of our knowledge, no computational
implementation of XT/3C has been published yet, this paper
presents a first attempt to computationally model XT/3C’s Pho-
netic Planning. This consists of a minimal implementation of
the model in order to verify that it can predict basic features
of speech. A computational model of XT/3C’s Phonetic Plan-
ning involves the specification of the objective function used
in the optimization process. However, due to the variable na-
ture of targets in XT/3C, the intelligibility cost function cannot
be considered as a distance from an invariant canonical target,
as assumed in previous AP-based speech optimization mod-
els [3, 11]. Instead, we propose an approach which consists
of modeling intelligibility as the probability of a target speech
sound (e.g. a phoneme) to be recognized given an articulatory
configuration. This approach offers a flexible way to account
for different languages, language varieties, and speech varia-
tion within utterances. This is because probabilistic models can
be modified for specific languages as long as labeled corpora
are available for each language. Some aspects of speech vari-
ation can be modeled within the Phonetic Planning component
of XT/3C by varying the weights assigned to each component
of the cost function (task requirements and movement costs).

The structure of the paper is as follows. Section 2 intro-
duces a minimal OCT-based model as an initial development of
our computational model of XT/3C’s Phonetic Planning com-
ponent. Section 3 introduces the static and articulatory models
used for our experiments. Section 4 details the methodology for
computing the probabilistic intelligibility model used during the
optimization process. Section 5 presents short preliminary ex-
periments to illustrate the interest of the approach: We evaluate
the impact of the weight assigned to effort on i) the positions of
the optimized vowels in formant space, and ii) the production
of consonants in an intervocalic context.

2. Modeling optimal control of speech with
context-dependent articulatory targets

This paper presents a minimal working model of speech pro-
duction using OCT. For that purpose, it considers only intelligi-
bility and least articulatory effort as tasks to satisfy. We assume
that this minimal optimization procedure should be sufficient
to predict basic features of speech, such as hypo- and hyperar-
ticulation as predicted by Lindblom’s H&H theory [12]. This
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paper does not consider the requirement of utterance brevity,
as additionally proposed in other papers [3, 11]; this could be
considered in future work. The objective function is thus:

C(θ) = αEE(θ) + αI(1− I(θ)), (1)

where C(θ), E(θ), and I(θ) are the overall cost, the effort
cost, and the intelligibility cost, respectively, all functions of
the model parameter vector θ. Maximizing intelligibility is as-
sumed to lead to hyperarticulation, whereas minimizing articu-
latory effort is assumed to lead to hypoarticulation. These con-
flicting demands can be balanced and modulated by adjusting
the weights αE and αI , assigned to the effort and the intelligi-
bility costs, respectively.

2.1. The Effort cost

Two dominant performance objectives are commonly used in
Optimal Control Theory (OCT) to quantify effort, namely min-
imum squared jerk [13–15], and minimum squared motor com-
mands [16–18]. In this paper, we chose to consider the mini-
mum squared motor command objective function. As proposed
in [3, 19], we assume that the motor commands are defined as
the resulting forces acting on the articulator. Following New-
ton’s second law of motion, the force acting on the nth artic-
ulator (or the nth static parameter, as explained in Sec. 3.1) is
Fn(t) = mnẍn(t), where m is the mass of the articulator, and
xn(t) is time course of the nth articulator. This yields the fol-
lowing cost accounting for the effort of articulatory parameter
n:

En =

∫ T

0

|Fn(t)|2dt = m2
n

∫ T

0

|ẍn(t)|2dt. (2)

Since there is no known principled way to tune the mass m
for each articulatory parameter, we decided to simply set them
all to m = 10−3kg. The total effort cost is the sum of the effort
associated to each articulator, namely E =

∑N
n=1 En.

2.2. The Intelligibility cost

In Embodied Task Dynamics [3], derived from AP/TD, intelli-
gibility is measured as the distance between the current state
of the system and a pre-defined invariant target. However,
the distance-to-invariant-target approach is inappropriate for
XT/3C, because XT/3C’s targets are context-dependent. That
is, because the targets for the same phoneme in different con-
texts differ from each other, a different approach is required.

In this paper we propose a novel approach to speech targets
and intelligibility based on probabilistic articulatory-acoustic
models. The idea is to consider the intelligibility function as
an approximation of the probability of recognition of a target
speech sound given an articulatory configuration. On the as-
sumption that human perception of phonemes is based on the
statistical distributions of their characteristics in the acoustic
and/or articulatory space, our approach provides a principled
approach to approximate intelligibility during speech commu-
nication. In addition, this model can be applied to any type of
model, whether the model requires invariant targets or context-
dependent targets. In XT/3C, it is assumed that the variability of
targets will result from the optimization of these targets, and that
speech variation will result from tuning the weights assigned
to each task of the global objective function. Mathematically,
the intelligibility I is proportional to the posterior probability
P (p|x) of the phone p given a static articulatory vector x (cf.
Sec. 3.1 for the definition of x). It is defined as:

I = max (P (p|x))× 2

π
arctan (c∆t) , (3)

where P (p|x) is the posterior probability of the phone p given
the static articulatory vector x. ∆t is the time duration of a seg-
ment for which P (p|x) is higher than an ad hoc threshold, and
c is a constant. The term 2

π
arctan (c∆t) is used to account

for the non-linear relationship between phone intelligibility and
phone duration. Indeed, the probability of phone recognition in-
creases asymptotically for longer durations [20, 21]. Following
the idea by Šimko and Cummins [3], we propose the arctan
function to model the non-linear function of phone probabil-
ity as a function of time. The constant c was chosen to adjust
the shape of the function. High values of c return high phone
probabilities for short phone segments, while small values of c
require longer phone segments for high phone probabilities.

Section 4 details the methods for implementing probabilis-
tic models, which were used to compute P (p|x). In this pa-
per we set c = 500, and ∆t as the time segment for which
P (p|x) ≥ 2

3
max (P (p|x)). This relative threshold was cho-

sen to ensure a non-null intelligibility gradient, which would
prevent the optimization process from converging.

3. Articulatory models
The variable θ (the input of the objective function in Eq. (1))
combines two types of parameters: static and dynamic. The
static parameters define a static articulatory model describing
the position of the speech articulators and the geometry of the
vocal tract at a given time instant. Dynamic parameters pertain
to a dynamic articulatory model describing the time-course of
the static parameters’ movements.

3.1. The static articulatory model

The Maeda model [22] was used as the static articulatory model.
This articulatory model generates midsagittal shapes of the vo-
cal tract using seven independent articulatory parameters, cor-
responding to the principal components that explain most of the
observed variance in articulatory data. These are expressed in
terms of standard deviations above or below the mean value,
where the mean value (i.e. 0) corresponds to a neutral position.
The static parameters at a given instant t are stored in the vector
x, containing the values of the seven parameters, where each
value is contained between -3 and +3.

3.2. The dynamic articulatory model

The dynamic articulatory model used in XT/3C is general Tau
theory [10], which states that voluntary movements close a gap
between the current state of an effector and its target state. As
opposed to asymptotic models used in AP/TD [1, 23, 24], Tau
theory assumes that targets are reached. Given an initial gap
X0 and gap-closure duration T , the gap-closing function X(t)
depends only on the Tau-coupling parameter k:

X(t) = X0

(
1− t2

T 2

) 1
k

. (4)

Modifying k will shape the velocity profile, as shown in Fig-
ure 1.

4. The intelligibility model
The intelligibility model is trained and tested using a set of syn-
thetic data, denoted X , consisting of 107 randomly generated
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Figure 1: Examples of gap functions and velocity profiles of
Tau-guided movements. The left plot displays Tau-guided move-
ments for different k-values. The right plot displays their corre-
sponding velocity profile.

vectors containing the values of the 7 parameters of the Maeda
model, following a uniform distribution between -3 and 3.

4.1. Labeling the training data

Labeling X with the appropriate phoneme was done as fol-
lows. The first step consisted of identifying stop conso-
nants, fricatives and vowels. We computed tract variables
following the technique detailed in [25] and used them to
detect and label consonants according to the degree and lo-
cation of the minimal constriction. The tract variables are
lip aperture (LA), tongue tip constriction degree (TTCD),
and tongue body constriction degree (TBCD). In addi-
tion, we estimated the minimal constriction degree MCD =
min{LA, TTCD, TBCD} and the location of the minimal
constriction MCL = argmin{LA, TTCD, TBCD}. A con-
figuration is considered as a consonant if MCD < 0.5 cm, oth-
erwise it is considered a vowel. A consonant is considered as
a stop consonant if MCD < 0.1 cm. Otherwise, the consonant
is considered as a fricative. The stop consonants were labelled
as /b/, /d/ and /g/ for MCL at lips, tongue tip and tongue body,
respectively. The corresponding labels for fricatives were /v/,
/z/, and /Z/, respectively, if the consonant was a fricative.

Labeling vowel configurations was required to predict the
vowel from the formant pattern. For that purpose, we specif-
ically built a Gaussian Mixture Model (GMM) trained on real
formant data. Training data were extracted from the Vocal Tract
Resonance (VTR) Corpus [26], which contains manually ex-
tracted formant trajectories of 538 utterances from the TIMIT
database [27], uttered by 186 speakers of American English.
The values of the 4 first formants at the mid-point of each of the
5526 analyzed monophthong vowels in the VTR corpus were
extracted, resulting in a 5526×4 matrix. We then merged some
vowels as follows: /@/-like vowels ax, axr, and ax-h, merging
into a single ax class, /I/-like vowels ix and ih merging into a
single ih class, and /u/-like vowels uw and ux merging into a
single u class. After merging, there were 11 vowel classes. Vo-
cal Tract Length Normalization (VTLN) was applied to formant
values [28]. We chose the length of the normalized vocal tract
Lref to correspond to the length of the vocal tract in the neutral
configuration of the Maeda model, namely Lref = 16.27cm.
The GMM was fitted on the data using the iterative Expectation-
Maximization algorithm. It was used only to label the vowel
configurations in X with the predicted vowel.

4.2. Training articulatory-to-probability models

We trained a Multi-Layer Perceptron with one hidden layer of
100 nodes as a classifier. We randomly took 90% the data in
X taken at random for training. The remaining data was used
as the validation set. We chose a Rectified Linear Unit (ReLU)
as activation function and a batch size of 1024 for training. We
used a L2 regularization term applied to the model weights in

order to allow smoother decision boundaries. A value of 1 was
empirically found to be a good trade-off between high classi-
fication accuracy and sufficiently smooth decision boundaries.
The accuracy score on the validation set was 95.2% .

5. Experiments
We present two short experiments which aim at verifying the
ability of our minimal implementation of XT/3C’s phonetic
planning for predicting speech phenomena. Both experiments
investigate the impact of the weight assigned to effort on the
production of speech sounds. The first experiment focuses on
the production of vowels. The second experiment focuses on
the production of stop consonants in an intervocalic context.
The balance between effort and intelligibility is quantified by
an effort ratio defined as αE

αI
. In these experiments, αI = 1,

such that the effort ratio is equivalent to αE .

5.1. The impact of the least effort requirement on the pro-
duction of vowels

For each individual optimization of a set of 5 vowels (/A, O, u,
i, e/), we consider two movements. The first one goes from
the Maeda’s neutral position (all static parameters are set to
0) to the vowel to optimize. The second one goes back to
the Maeda’s neutral position from the optimized vowel target.
Each movement duration was 250 ms long. The k-values of
the second movement were fixed to 0.4, which corresponds to
a purely symmetrical velocity profile. A symmetric velocity
profile was chosen because it has been frequently observed in
previous studies [29–31]. The parameters to be optimized were
the set of the first movement’s endpoints for each articulatory
parameter, as well as a global k-value corresponding to the first
movement, which will be considered as the same for all articu-
lators, i.e., a parameter vector θ = [k, x1, x2, . . . , x7]

T .
For the 5 vowels of our phone set, we ran several optimiza-

tion procedures with various effort weights αE . We varied αE

from 0 to 10000. For each weight value, we ran 50 optimization
processes with different initial solutions generated randomly.
The final solution was then the one that returned the lowest cost.
Figure 2 shows the position of the returned solutions in the vo-
calic space F1–F2 for the different weights assigned to artic-
ulatory effort. Formant frequencies have been estimated from
the vector of Maeda’s parameters included in the optimized θ.
The right plot shows the k-values returned by the optimization
as a function of αE . As expected, increasing the weight as-
signed to the effort cost results in vowel centralization: vowel
positions in formant space converge towards a central position,
corresponding to the formants of the neutral configuration of
the Maeda model. As a consequence, the volume of the vo-
calic space becomes smaller as the effort weight increases. The
weight assigned to effort also has an impact on the optimized
k-values. A small effort weight leads to small k-values. This
is because small k-values correspond to movement with early
velocity peaks: they move quickly to a position close to the
target. In our model, this increases intelligibility because the
movement allows the articulatory configurations to spend more
time in a high-probability region, resulting in an increase of ∆t
in Eq. (3). However, as shown in [31], Tau-guided movements
with small k-values require much more effort than the effort-
optimized Tau-guided movements. Consequently, this gain of
intelligibility with early peak velocity is compensated by the
effort cost when αE increases: optimized k-values increases
for αE ≥ 10−3 in an asymptotic manner towards the optimized
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k-value of 0.45 for αE ≥ 1. This k-value corresponds to the
value for which a Tau-guided movement will produce the mini-
mal effort for a given amplitude and duration, as shown in [31].

Figure 2: Left: position of the solutions in the F1−F2 vocalic
space for 5 vowels (/A, O, u, i, e/). The size and colors of star
markers correspond to different values of αE . The larger the
star marker, the greater the weight. The initial position for each
vowel (αE = 0) is denoted by a green circle. Right: optimized
k-values as a function of αE plotted on a logarithmic scale. The
dashed line represents the median k-value for a given αE .

5.2. The impact of the least effort requirement on the pro-
duction of stop consonants in an intervocalic context

We consider an articulation consisting of four movements: (1)
from the Maeda’s neutral position to a vowel configuration
(denoted V1), (2) from V1 to the target consonant (C), (3)
from C to the second vowel (V2), and (4) back to the neu-
tral position. In this experiment, V1 and V2 are fixed: only
the target position C and the global k-value of the conso-
nantal movement are optimized. For the sake of brevity, we
only show results for the alveolar stop consonant (C=/d/) with
V1=V2=/A/. The articulatory vector used for V1 and V2 is
xV = [0.51, 2.52,−1.31,−3, 3,−3,−1.06]T . Similarly to
the first experiment, eight parameters are optimized, namely
θ = [k, x1, x2, . . . , x7]

T .

Figure 3: Minimum of the tongue tip constriction degree (Top)
and duration of occlusion (bottom) in the optimized /AdA/ se-
quence, as a function of the weight assigned to effort (αE) in a
logarithmic scale. The center of the plot displays the contours
of the vocal tract corresponding to the optimized consonant tar-
gets, following the Maeda model.

Fig. 3 shows the minimal constriction of the tongue tip con-
striction degree and the duration of the alveolar occlusion dur-
ing the simulated /AdA/ sequence as a function of αE , the weight
assigned to effort. The evolution of the minimal tongue tip con-
striction degree (top panel of Fig. 3) shows different regions.
For small αE (≤ 1), the consonantal movement has a suffi-
ciently large amplitude to allow the formation of an occlusion
(the minimal TTCD is 0): this is the stop region. Note that the
linguopalatal contact region may change in this region (see the
vocal tract shapes in the middle panel of Fig. 3). The contact

region is much larger for very small αE compared to αE close
to 1. As seen in the bottom plot of Fig. 3, the occlusion duration
increases with decreasing αE .

When αE ≥ 1, the optimal solution does not allow the
vocal tract to be closed at the tongue tip. The minimal TTCD is
larger than 0, hence no occlusion. Depending on the value of the
minimal TTCD, three regions can be identified: spirantization,
approximation, and vocalization. Spirantization occurs when
1 ≤ αE ≤ 20: the minimal TTCD is smaller than 0.5 cm,
which corresponds to a fricative. When 30 ≤ αE ≤ 500, this
is the approximation region: the minimal TTCD is below 1
cm and above 0.5 cm, which yields an approximant. Finally,
when αE > 500, the effort requirement is too large to allow a
movement towards a consonant: the returned solution is a vowel
similar to V1 and V2.

6. Conclusion and future work

This paper presents a simple optimization-based computational
model of XT/3C’s phonetic planning [4, 9]. It used a minimal
model that accounts only for effort vs. intelligibility during the
multi-task optimization process. The paper presents two pre-
liminary experiments which show that our computational im-
plementation of XT/3C’s phonetic planning is able to predict
some basic features of speech: vowel centralization and stop
consonant lenition in hypoarticulated speech. These results pro-
vide support for the use of XT/3C as an articulatory planning
model. In the future, the objective function should be developed
to account for different types of timing effects, such as timing
patterns relating to prosodic structure [11] and rate of speech.
All experiments reported in this paper used the PlanArt soft-
ware, publicly available at git.ecdf.ed.ac.uk/belie/
planart.

It is of note that our model predicted the use of two distinct
regimes of dynamic articulatory trajectories: an early peak ve-
locity regime and a nearly symmetric velocity profile. The early
peak velocity regime is predicted when the least effort require-
ment is small in relation to the intelligibility requirement, which
allows the speaker to spend more time in an intelligible, high
probability region. When the least effort requirement is suffi-
ciently large, the nearly symmetric velocity profile regime is fa-
vored as it requires much less effort than the early peak velocity
regime [31]. Previous experimental studies showed that speak-
ers primarily use a nearly symmetrical velocity profile [29–31],
which supports the hypothesis of a least effort requirement dur-
ing speech production.

This paper also presents a new probabilistic approach to ac-
count for intelligibility in OCT-based models of speech produc-
tion. As the model is trained partially on real speech data, it
provides a realistic approximation of intelligibility that relates
intelligibility to observed distributions of articulatory charac-
teristics in a principled way. Although this probability model
has been designed for our context-dependent articulatory tar-
gets, it can also be applied to speech production models that
consider invariant targets. In addition, probabilistic models can
be modified for a specific language or variety of language if an
appropriate labeled corpus is available. One possible improve-
ment would be to build intelligibility models solely based on
real data, using an articulatory-acoustic database. This would
also allow more phonemes to be considered and more realistic
aspects of speech to be simulated.
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