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Abstract
Due to the high acoustic variability of child speech and the
lack of publicly available datasets, acoustic modeling for child
speech is challenging. In this work, we address these challenges
by leveraging the large amounts of resources for adult speech
(well-trained acoustic models and transcribed speech dataset)
and proposing a joint acoustic feature and model adaptation
framework to minimize acoustic mismatch between adult and
child speech. Empirical results on three tasks of speech recog-
nition, pronunciation assessment, and fluency assessment show
that our proposed approach consistently outperforms competi-
tive baselines, achieving up to 31.18% phone error reduction on
speech recognition and around 7% gains on speech evaluation
tasks.
Index Terms: unsupervised acoustic modelling, feature and
model adaptation, speech evaluation

1. Introduction
Thanks to the availability of vast amounts of linguistic resources
and deep learning models, automatic speech recognition (ASR)
technology has achieved great success in recent years. How-
ever, it is still challenging when processing child speech (e.g.
Google’s voice-activated application [1] and automatic speech
evaluation tasks for child speech [2, 3, 4, 5, 6]). Physiological
differences, proficiency differences, as well as different speak-
ing habits all cast technical challenges on acoustic modelling
for child speech [7, 8, 9, 10, 11, 12]. Though large-scale anno-
tated resources enable to develop superior acoustic models, this
privileged scenario is often unavailable when applied to child
speech [13, 14].

To overcome such challenges, our previous work pro-
posed to perform unsupervised feature adaptation that trans-
forms child acoustic features to the adult acoustic feature space
based on adversarial multi-task learning. We strategically incor-
porated phonemic information during the model training pro-
cess to learn the fine-grained transformation adaptation. Al-
though exploiting phonemic information can help anchor more
targeted transformations, the demerit is that the information is
represented by pseudo phonetic labels that are generated by an
adult acoustic model. The acoustic feature alignment relies on
the quality of pseudo labels and incorrect pseudo labels could
result in wrong feature adaptation. In this work, we introduce
model adaptation in our previous feature adaptation framework
to alleviate the harm from noisy pseudo labels and further re-
duce the acoustic domain mismatch. We propose a novel bidi-
rectional learning algorithm to jointly learn feature and model
adaptation, in which two adaptation modules are trained alter-
natingly to promote each other through providing more accurate
information to the other. We validate our method on three tasks

and experiment results demonstrate that the proposed approach
outperforms established baselines by a large margin.

2. Related work
2.1. Acoustic modeling for child speech

Training speaker dependent models with large amounts of la-
beled data [1] is the most straightforward way to reach good
performance. Using a small amount of labeled data, it is also
possible to train a good speaker dependent model by tailoring
it to child. In [13], it freezes lower layers of the pre-trained
model while only updating the output layer with a few tran-
scribed child speech samples to better fit the characteristics of
child speakers. Rather than training speaker dependent models,
adaptation techniques such as feature space maximum likeli-
hood linear regression (FMLLR [15]) can be applied. However,
most of these methods require at least some amount of manu-
ally transcribed resources for supervised training, fine-tuning,
or adaptation, which are often time consuming and in reality
difficult to obtain because of privacy issues. Furthermore, se-
quentially retraining pre-trained DNN models with labeled data
from new domains usually suffers from catastrophic forgetting
[16, 17]. Such challenges motivate us to explore unsupervised
acoustic adaptation approaches.

2.2. Adversarial learning for domain adaptation

Adversarial learning, which is inspired by generative adversar-
ial networks (GAN)[18], has become popular in recent years.
It has been investigated for learning domain-invariant models
in areas such as image processing [19, 20], text processing
[21, 22], and speech processing [23, 24]. Instead of training
domain-invariant models from scratch, we applied adversar-
ial training to explicitly learn global child-to-adult adaptation
transformations at the feature level [25]. Although it achieved
favorable performance, the quality of the model-generated soft
labels could cast limitations in achieving robust feature align-
ment. To address this problem, we introduce model adaptation
and bidirectional adaptation learning algorithm in this work,
where both feature adaptation and model adaption can improve
each other in a closed training loop.

3. Adversarial multi-task training based
acoustic feature and model adaptation

Figure 1 shows our proposed model architecture for acous-
tic modeling of child speech. The output layer of the feature
adapter (parametrized by Θf adpt) is connected to the input
layer of the adult acoustic model. The parameters of the adult
acoustic model are copied from a well-trained adult model.
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Figure 1: Overview of our proposed framework.

We replace its last layer with a trainable lightweight model
adapter (parametrized by Θm adpt) that performs model adap-
tation while the layers used for learning feature representation
are frozen during model training. The domain discriminator
(parametrized by Θdom) is attached to the output layer of the
front-end feature adapter for mapping the transformed features
to domain labels. During inference, the domain discriminator
is removed and the senone labels are output from the model
adapter.

3.1. Acoustic feature adaptation

The feature adapter reduces the acoustic space shift by max-
imizing the domain discriminator loss while minimizing the
senone classification loss. Assuming that the model is trained
with N speech samples, of which n samples are adult speakers,
the loss function is defined as:

L(Θf adpt,Θdom) =Lsenone − Ldom

=
1

n

n∑

i=1

Li
senone(Θf adpt)

− 1

N

N∑

i=1

Li
dom(Θf adpt,Θdom)

(1)

where Lsenone is the cross-entropy loss for the senone classifi-
cation on adult speech samples only while the domain classifi-
cation loss Ldom is calculated on all speech samples. For each
sample i, it is computed as follows:

Li
dom =− (1− Idom)

K∑

k=1

αi
k logP (dom = a, sen = k | xi)

− Idom

K∑

k=1

αi
k logP (dom = c, sen = k | xi)

(2)
where Idom is the domain indicator function. It is equal to
0 for adult training samples and 1 for child training samples.
K is the number of senone categories and αi

k is the kth en-
try of senone posteriors for speech sample i, which is extracted
from the adult acoustic model. Considering inaccurate do-
main labels could lead to learn wrong feature alignment, in-
stead of using one hot hard labels, we employ soft domain la-
bels for model training. The soft domain labels consist of two
parts: broad binary (child/adult) domain information (hard la-
bel) and the fine-grained senone information (probability label).

Figure 2: (a) Acoustic feature adaptation (b) Joint learning fea-
ture and model adaptation. Adapted acoustic model can gener-
ate more accurate pseudo senone labels

They are thus represented by a 2K dimension vector, [0;α] for
child and [α;0] for adult. P (dom = a, sen = k | xi) and
P (dom = c, sen = k | xi) are the kth entry of probabil-
ity outputs from the domain discriminator for adult and child
speech samples respectively.

To ensure the features generated by the feature adapter
are able to perform senone classification and the adapted child
acoustic features are closer to the adult speech features, Θf adpt

and Θdom are optimized such that:

Θf adpt = argmin
Θf adpt

L(Θf adpt,Θdom) (3)

Θdom = argmax
Θdom

L(Θf adpt,Θdom) (4)

Though we can accurately get the binary domain information
according to the data sample itself, the senone information for
child speech samples, however, can only be obtained by the
adult acoustic model. Adopting inaccurate senone information
may cause child speech samples with acoustic feature distribu-
tions that match the adult ones well but are somehow associ-
ated with wrong labels after the feature adaptation. Figure 2(a)
shows an example of classifying two senones (s3 and s5). In the
figure, we see that while the pre-trained adult acoustic model
can predict some senone labels correctly, there are still many
child samples (the stars in the red circle) falsely classified by the
adult acoustic model, resulting in wrong feature alignment af-
ter the adaptation. Indeed, the pre-trained adult acoustic model
does not necessarily predict correct labels for child speech. This
limitation motivates us to incorporate acoustic model adaptation
into feature adaptation training to produce an acoustic model
more suited to generating labels for child speech, which we
elaborate in the next section.
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Algorithm 1 Bidirectional training for feature and model adaptation

1: Input: (Xadult,Yadult), Xchild

2: For ep in 1 to Nep do
3: For iter in 1 to Niter do
4: Generate Ychild with Mep

iter

5: Optimize θm adpt with (Xadult,Yadult),
(Xchild,Ychild) using equation 6

6: End for
7: Generate Ychild with Mep

Niter

8: Optimize θf adpt and θdom with (Xadult,Yadult),
(Xchild,Ychild) using equation 3 and 4

9: End for
10: Output MNep

Niter
(θf adpt), M

Nep

Niter
(θm adpt)

3.2. Acoustic model adaptation

As shown in Figure 1, the last layer of pre-trained adult acous-
tic model is replaced by a model adapter, the adapted acoustic
model (adult acoustic model + model adapter), therefore, is ex-
pected to be more suitable for recognizing child speech. The
loss function for training model adapter is computed as:

L(Θm adpt) =
1

N

N∑

i=1

Li
senone(Θm adpt) (5)

where Lsenone is the cross-entropy loss on all labeled adult and
unlabelled child speech samples, which is different from the
feature adaptation in equation 1 that only computes the loss on
adult samples. Θm adpt is optimized as:

Θm adpt = argmin
Θm adpt

L(Θm adpt) (6)

To generate more reliable labels for unlabelled child
speech, we propose a bidirectional training algorithm, which in-
crementally optimizes feature adaptation and model adaptation
layers. In Algorithm 1, each training cycle consists of multi-
ple updates to the model adapter and one update to the feature
adapter. The number of updates to model adapter, Niter , is a
hyperparameter and is tuned on the validation set. Given the la-
beled adult speech samples (Xadult,Yadult) and unlabeled child
speech samples (Xchild), the inner loop is mainly to learn the
model adaptation with model predicted senone labels of high
output probabilities (Ychild), and the adapted model, Mep

Niter

(green classification boundary in Figure 2(b)), is capable of gen-
erating more accurate pseudo labels than the fixed adult acoustic
model (black classification boundary in Figure 2(a)). Utilizing
soft labels that are closer to the ground truth can promote learn-
ing the feature adaptation. Similarly, better feature adaptation
model would in return contribute to better model adapter. Such
joint feature and model adaptation training allows two adapta-
tion models to gradually refine and reinforce each other, ulti-
mately resulting in a better acoustic model for processing child
speech.

4. Experimental setup
4.1. Datasets

4.1.1. Adult speech corpus

The adult speech datasets used for acoustic feature and model
adaptation are LibriSpeech [26] ”train-clean-100” subset, ”dev-
clean” subset, and ”test-clean” subset.

4.1.2. Child speech corpus

The child speech dataset is SingaKids-English corpus, which
includes 46 hours (train-40h, dev-2h, test-4h) of phonetically
transcribed children’s speech data. There are 193 speakers in
total, aged between 6 and 12 years old. 1547 utterances from
the ”test-4h” subset was scored for pronunciation and fluency
using 5 proficiency levels by an English teacher certified by the
Ministry of Education, Singapore.

4.2. Model implementation

4.2.1. Acoustic model

For easy deployment on low-power devices, the pre-trained
adult acoustic model is a small-size DNN model (26.5906 mil-
lions parameters) that was well trained on large amounts of
adult speech data. The acoustic feature dimension is 1320,
which consists of 11 consecutive speech frames. Each speech
frame is parameterized into 40-dimensional log Mel-scale filter-
bank features, along with their first and second difference coef-
ficients. The acoustic model in Figure 1 (adult acoustic model
+ model adapter) is initialized with the pre-trained adult model
while we freeze the feature representation layers and allow the
last layer to be trainable. During model training, we adopt both
batch normalization and dropout to prevent over-fitting. The
LibriSpeech developmental set ”dev-clean” and the SingaKids-
English developmental set ”dev-2h” were used to optimize the
model hyperparameters.

4.2.2. Assessment model

A multi-task DNN was employed to conduct the pronunciation
and fluency scoring. To train the assessment classifier with lim-
ited utterance-level scoring data, we used 3 dense layers with
128 nodes per layer for representation learning, and 2 softmax
layers with 5 nodes to output the proficiency score. The input
feature is a 30-dimensional vector consisting of a set of widely
used speech evaluation features [2, 27, 28].

4.3. Evaluation metric

To better examine the acoustic modeling itself, instead of using
language models, we employ the free phone decoding graph for
the speech recognition task and use phone error rate (PER) to
evaluate the performance. As for the speech assessment tasks,
we adopt two widely used metrics [29, 30] of prediction accu-
racy and mean squared error (MSE) for evaluation. MSE is used
to measure the difference between the model predicted score
and the reference score rated by the teacher when the scoring
classifier gives a wrong prediction. The performance metrics
are computed by comparing the model’s predicted scores with
the scores rated by a teacher. The two-sided t-test is utilized to
assess the statistical significance of performance metric differ-
ences between various methods.

5. Experimental results
5.1. Speech recognition

To validate the competitiveness of baseline model, we first con-
duct speech recognition on LibriSpeech “test-clean” set with
the standard pruned version of the WSJ-5k tri-gram language
model. It achieves a word error rate (WER) of 9.49%, which is
better than Kaldi’s benchmark result of 9.66%1 adopts a simi-

1https://github.com/kaldi-asr/kaldi/blob/master/egs/librispeech/s5
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Table 1: Phone error rate (%) on SingaKids-English test set.

Method G12 G34 G56 Overall
Pre-trained adult acoustic model (Baseline) 85.11 73.24 69.08 74.43
+ Feature adaptation FMLLR 83.73 73.24 65.78 72.55

SAT 69.56 61.84 58.02 62.02
+ Model adaptation 54.67 48.12 46.30 48.86
+ Feature adaptation + model adaptation (Proposed) 46.26 43.44 41.42 43.25

larly sized model and same testing settings. This suggests that
the pre-trained adult acoustic model can be used as a competi-
tive baseline model. We also include comparisons to two fea-
ture adaptation approaches of FMLLR and SAT [29]. The FM-
LLR transformations are estimated using the labels predicted by
baseline model. The six grades of primary school were merged
into three groups of G12 (age 6-7), G34 (age 8-9), and G56 (age
10-12) to analyze the results.

As shown in Table 1, the proposed joint feature and model
adaptation approach achieves the lowest PER in all conditions,
which shows the effectiveness of our proposed approach. It re-
duces the overall PER by 31.18% over the pre-trained model,
by 29.3% over the FMLLR adaptation, by 18.77% over the
SAT adaptation, and by 5.61% over model adaptation. FM-
LLR adaptation being worse than the adversarial-based feature
adaptation methods indicates that the one hot phonetic labels
predicted by the pre-trained model are not reliable, and directly
employing such hard labels will cause a tendency for learned
transformations to overfit wrong phone classes.

We also observe that the PER is up to 85.11% for the child
speech of G12 when directly employing the pre-trained adult
acoustic model, even though its WER is less than 10% on the
Librispeech ”test-clean” subset. Meanwhile, as the school grade
increases from G12 to G56, the PER decreases from 4.84%
to 17.95% in different methods. Such performance differences
match our understanding that there is a huge acoustic mismatch
between adult speech and child speech. Moreover, the acoustic
variability of younger child (G12) is higher than that of senior
grades, and their pronunciation shifts across age groups and be-
comes closer to that of an adult’s along their growth and devel-
opment during childhood.

All models powered by speech adaptation achieved better
performance than the pre-trained model, suggesting that speech
adaptation is able to reduce the mismatch between the adult
and child acoustic domains. When combining feature adap-
tation with model adaptation, the performance can be further
improved, which means the feature adaptation and model adap-
tation are complementary to each other and helps achieve the
best result in adapting child speech to adult speech. Although
the PER is relatively high at around 43%, it is consistent with
literature [13, 31, 32], illustrating that recognizing child speech
is challenging.

5.2. Pronunciation and fluency assessment

When using speech technology to evaluate speaking skills such
as pronunciation and fluency, acoustic modeling is a crucial as-
pect. The phone likelihood ratio and duration of phones and
pauses, obtained from an acoustic model, are commonly used to
evaluate pronunciation proficiency and speaking fluency. This
section presents a performance comparison of these two speech
assessment tasks.

Tables 2 shows the results on pronunciation and fluency as-
sessment tasks. We first observe the proposed approach im-

Table 2: Pronunciation and fluency evaluation. Asterisks (*)
indicate statistically significant differences at the 0.05 signifi-
cance level between the baseline and the proposed method in
the two-sided t-test.

Accuracy(%) MSE
Baseline Proposed Baseline Proposed

Pron G12 42.1 50.0* 1.30 1.11*
G34 37.3 47.7* 1.14 1.11
G56 47.3 53.6* 1.44 1.17*

Overall 43.3 50.2* 1.32 1.16*
Flu G12 31.6 52.6* 2.25 1.38*

G34 40.3 47.7* 1.96 1.45*
G56 50.9 54.5* 2.22 1.31*

Overall 44.2 50.9* 2.13 1.39*

proves the overall prediction accuracy over the baseline by 6.9%
on pronunciation evaluation task (Pron) and 6.7% on fluency
evaluation task (Flu). The adapted acoustic model, therefore,
can generate more precise forced alignments (containing pro-
nunciations per word and time boundaries) of child speech for
the scoring classifier. The fluency prediction accuracy on G12 is
improved from 31.6% to 52.6% and the corresponding MSE is
reduced from 2.25 to 1.38. It indicates our approach can better
align the speech of younger students and provide more accurate
duration features for the fluency scoring classifier. It is impor-
tant to note that fluency scoring has to be performed at the utter-
ance level or longer, resulting in significantly less labeled data
being available for training the assessment classifier compared
to acoustic modeling. This data scarcity limits the performance
on utterance-level assessment task.

6. Conclusions and future work
To tackle the challenges posed by the high acoustic variability
and limited linguistic resources available for modeling of child
speech, we proposed an unsupervised speech adaptation method
based on adversarial learning to reduce the mismatch between
child speech and adult speech. We designed a novel bidirec-
tional learning algorithm that facilitates the joint learning of
feature and model adaptation. The algorithm utilizes two adap-
tation modules that alternate in training to improve each other’s
performance by exchanging more accurate information. The
results showed that the proposed joint feature and model adap-
tation method outperforms other comparable baselines across
various speech tasks.

Our future efforts will involve leveraging more unlabelled
child speech data (hundreds to thousands of hours) to improve
performance and explore its ceiling. Developing strategies to
reduce the requirement for teacher scores, which is a time-
consuming and labor-intensive task, is another future endeavor.
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