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Abstract
We compare phone labels and articulatory features as input for
cross-lingual transfer learning in text-to-speech (TTS) for low-
resource languages (LRLs). Experiments with FastSpeech 2
and the LRL West Frisian show that using articulatory features
outperformed using phone labels in both intelligibility and nat-
uralness. For LRLs without pronunciation dictionaries, we pro-
pose two novel approaches: a) using a massively multilingual
model to convert grapheme-to-phone (G2P) in both training and
synthesizing, and b) using a universal phone recognizer to cre-
ate a makeshift dictionary. Results show that the G2P approach
performs largely on par with using a ground-truth dictionary
and the phone recognition approach, while performing gener-
ally worse, remains a viable option for LRLs less suitable for
the G2P approach. Within each approach, using articulatory
features as input outperforms using phone labels.
Index Terms: neural text-to-speech synthesis, low-resource
languages, articulatory features, pronunciation dictionary

1. Introduction
1.1. Multilingual data for TTS in low-resource languages

Neural TTS produces speech that is both more intelligible and
more natural than its preceding paradigms [1]. However, it re-
quires large amounts of training data: LJSpeech [2] is one of
the most commonly used data sets in neural TTS research and
it has nearly 24 hours of professionally recorded single-speaker
American English speech. This makes it hard to directly use
neural TTS for low-resource languages (LRLs), which make
up most of the languages in the world. One approach to deal
with this is to make use of data from high-resource languages.
This is done by taking advantage of the latent space information
shared by languages, even if they are apparently very different.
A meta-analysis [3] found this to be effective, and even more so
with neural TTS than with earlier TTS paradigms.

In this multilingual data approach, one particular method is
cross-lingual transfer learning: pre-training the acoustic model
with ample data from a high-resource language (the “source
language”) and fine-tuning it with limited data in the LRL (the
“target language”). However, this has an inherent challenge
of input mismatch. Two separate languages, however close to
each other, almost always have different phone sets. While us-
ing grapheme input may avoid the issue of different phone sets,
it may also lead to mispronunciation issues. Another challenge
is with unseen phones: phones of the target language that are
not in the source language. For these, the model has to initialize
their associated weights from scratch and learn from the limited
data. This makes transfer learning less effective. To avoid this,
[4] and our previous work [5] explored solving both challenges

simultaneously by applying different methods to map the target
languages’ phones (“target phones”) to their closest counter-
parts in the source languages (“source phones”). By using the
pre-trained weights of the source phones, this approach was able
to benefit the transfer learning process.

Such phone mapping gives promising results, but it also has
issues. First, it may introduce “accented” speech. This is when
the target phones still (partially) sound like the source phones,
especially with very little fine-tuning data. Second, the use of
phone labels (e.g., IPA or X-SAMPA symbols) as model input
means that the input embeddings are treated in an all-or-nothing
manner. In other words, two phones that are represented by two
different labels will be considered completely different, even if
their pronunciations are close to each other. Consequently, there
are likely source phones that are not mapped to any phones and
thus simply unused. This leads to inefficient use of data, which
is not helpful for LRLs. Both issues may be solved by replacing
phone labels (and thus avoiding phone mapping) with universal
articulatory features. These are features associated with how
the phones are pronounced and can be systematically looked up
from the phone labels. The universality of these features also
pre-emptively avoids the input mismatch issue, making cross-
lingual transfer learning more extensively applicable.

Thus, articulatory features were used as input in transfer
learning by [6]. However, they did not find significant improve-
ments in speech quality compared to using phone labels. Since
they used Tacotron 2 [7], an autoregressive (AR) TTS architec-
ture, their result could be partly due to the architecture’s higher
data requirement (compared to non-AR TTS [8]) and its associ-
ation with unstable attention training [9]. Therefore, this study
investigates whether using a non-AR TTS architecture can lead
to better results in transfer learning with articulatory features.

1.2. TTS for LRLs without pronunciation dictionaries

Another issue for LRLs is they often lack a pronunciation dic-
tionary. This limits TTS for such LRLs to two options. The first
is using grapheme input, which may lead to mispronunciation
issues, which are then compounded in transfer learning. The
second is building a pronunciation dictionary or a grapheme-to-
phone (G2P) system from scratch. This requires deep linguistic
expertise and heavy time investment, both not viable for LRLs.

One approach is to circumvent the need for an explicit dic-
tionary and use G2P conversion during both training and syn-
thesizing. To this end, G2P performance in LRLs can be aided
by using multilingual data (similar to TTS acoustic models).
One approach that has been used is to train a massively multi-
lingual (269-language) G2P model using found data from Wik-
tionary, as demonstrated by [10]. To enable parameter sharing
across all training languages, they combined data from all lan-
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guages into a single training set and used special language to-
kens in the input sequences to distinguish between languages.
For predicting each test utterance in an unseen test language,
they 1) searched for the test language’s 10 “nearest” training
languages using a phylogenetic tree, 2) generated one predic-
tion from each of these 10 languages (conditioned by the corre-
sponding language token) and 3) ensembled the 10 predictions
to form the final prediction. They reached an average phone
error rate (PER) of 35.7% across 605 test languages. Though
far from ideal, we argue that this is useful enough for TTS in
LRLs, even more so if articulatory features are used for input,
since these can facilitate efficient (transfer) learning even if the
phone labels are not identical, as mentioned in Section 1.1.

However, this G2P approach may not work equally well for
all LRLs. For any LRL, if its phone inventory and G2P rules
are too different from those of its 10 nearest training languages,
the approach’s performance will likely be lower. It will also de-
grade if these nearest languages themselves have limited train-
ing data and thus the G2P predictions conditioned on them are
already not adequately accurate. Therefore, we propose another
approach that is theoretically more language-independent: us-
ing a universal phone recognizer to predict phone sequences in
the audio segments and creating a makeshift pronunciation dic-
tionary using the accompanying texts. This dictionary is then
used in the TTS pipeline. This approach is inspired by a re-
cent work in phone recognition by [11]. First, they cascaded
a language-independent narrow phone layer and a language-
specific broad phone layer in the recognition model. Second,
they used phone sets from PHOIBLE [12] (a database of phone
inventories of 2,186 languages) to filter the phone output. They
reached a PER of 64.2% for the test language Tusom. While
even further from satisfactory than the G2P approach, this ap-
proach is more likely to work language-independently. Thus,
we posit that this approach can be considered for TTS in LRLs,
especially with the use of articulatory features as input. As men-
tioned in Section 1.1, this input type helps with transfer learning
even if the phone labels are not identical and thus is likely more
tolerant of inaccuracies in phone prediction.

1.3. Contributions

Accordingly, we aim to make the following contributions:

1) We use a non-autoregressive architecture (FastSpeech 2 [13])
in cross-lingual transfer learning for TTS in the low-resource
language (LRL) West Frisian to compare the effectiveness of
phone labels and articulatory features as model input.

2) We explore two options in the absence of a pronunciation
dictionary for the target LRL: a) predicting phone sequences
in both training and synthesizing with a massively multilin-
gual grapheme-to-phone model, and b) predicting phone se-
quences in audio with a universal phone recognizer and build-
ing a makeshift pronunciation dictionary.

2. Data sets & proposed pipelines
2.1. Languages & data used

For pre-training, we used the LJSpeech data set to facilitate
comparison in future research thanks to its popularity. For the
target LRL, we chose West Frisian (“Frysk”, hereafter Frisian),
the second official language of the Netherlands with roughly
350,000 native speakers [14]. We created a small single-speaker
data set from a Frisian audiobook to be used as training data.
We split the recordings into utterances by silence and manu-

ally checked to obtain their corresponding texts, normalized and
expanded the texts where relevant, and trimmed all preceding
and trailing silence. We randomly selected 150 utterances (∼15
minutes) for the training and validation set, and another 100 ut-
terances for the test set. Both sets have similar distributions of
duration d: d̄ = 6.0, sd = 2.2, 1 ≤ d ≤ 10 (seconds). For
the baseline models, we used a pronunciation dictionary. This
dictionary has roughly 73,000 entries and was derived from the
Frisian Audio Mining Enterprise (FAME) project [15]. For the
other models, to simulate the lack of pronunciation dictionaries
in LRLs, we used this dictionary only to analyze the results.

2.2. Multilingual grapheme-to-phone (G2P) model

Following Section 1.2, we used the pre-trained model from [10]
to do G2P conversion for the Frisian data in both training and
synthesizing. Using the dictionary as baseline, this model had
a mean phone error rate of 33% ± 6% (SE). It should be noted
that the model’s training data does include Frisian among its
269 training languages, so it is not exactly an unseen language.
It is thus reasonable to expect the model to perform better on
Frisian than on truly unseen languages. However, the Frisian
training data was still rather limited at 991 entries. This places
it among more than 95% of the 874 languages in [10] with fewer
than 5,000 entries. We thus assumed that the results from exper-
imenting with Frisian are still relevant for many LRLs, despite
technically not being representative for all languages.

2.3. Universal phone recognition model

We used the recognizer checkpoint provided by the authors
of [11] to perform phone recognition on the Frisian training and
validation sets, limiting the model’s output phone pool to the
40-phone Frisian phone set provided by PHOIBLE v2.0. Initial
tests showed that the result from this was insufficiently accu-
rate and thus not suitable for TTS training. As a result, we used
ground truth phone sequences of 30 utterances (∼3 minutes of
speech) to fine-tune the phone recognizer model. Admittedly,
such ground truth information is likely not available in practical
use with many LRLs, so this partially reduces the approach’s
applicability for LRLs. We discuss this further in Section 4.3.

The fine-tuned model was used to obtain 150 corresponding
pairs of texts and predicted phone sequences. Although these
were sufficient to train the TTS model, we also needed to gen-
erate phone sequences for the test utterances. This is because
in a practical scenario, there is no ground truth audio and there
is also a need for G2P capability for out-of-vocabulary (OOV)
words. There was no straightforward method to do this since we
lacked word boundaries information in the audio. Therefore, we
first tried using this 150-pair mini data set with OpenNMT v2.0
[16] to train a G2P model, but could not reach convergence due
to the small data size. Consequently, we built a mini makeshift
pronunciation dictionary using the predicted phone sequences
and their corresponding texts. We manually decided the word
boundaries. For words that had more than one predicted phone
sequence, we simply chose the most common prediction. We
then used this dictionary to train a G2P model so that it could
cover all words (including OOVs) in the test set.

3. Experiment details
3.1. TTS model architecture & training

For the acoustic model, we used the FastSpeech 2 implemen-
tation (∼35M parameters) of [17]. This used phone duration
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information extracted by the Montreal Forced Aligner (MFA)
[18]. MFA (v2.0.5) was also used for G2P when needed. For
the models with articulatory features as input, we used the im-
plementation in the IMS-Toucan Toolkit v2.3 from [19]. Phone
labels were converted into one-hot encoded vectors of corre-
sponding values from a set of 62 binary articulatory features.
This followed the convention in [20] and complemented their
set of 49 features with features such as phone length and more
fine-grained values for place and manner of consonant artic-
ulation. For the vocoder, we used pre-trained HiFi-GAN V1
(∼14M parameters) [21] for all models.

We first pre-trained two models in English, one with phone
labels and one with articulatory features as input. Each model
was trained for 200,000 parameter updates with a batch size of
32 (∼500 epochs) using the Adam optimizer ([22], β1 = 0.9,
β2 = 0.98, ϵ = 10−9). We then fine-tuned these two models
using the ground-truth Frisian pronunciation dictionary and call
the resulting models ph-gt and ft-gt following their input types.
Each fine-tuning was run for 5,000 parameter updates with a
batch size of 12 (∼400 epochs). All training was done on a
single NVIDIA V100 32GB GPU, taking roughly 45 hours for
pre-training and roughly 50 minutes for each fine-tuning.

From the pre-trained models, we also fine-tuned models
that did not have access to the dictionary following the pipelines
in Section 2.2 and 2.3. We call models from the G2P approach
-g2p and those from the phone recognition approach -rec. To fa-
cilitate comparisons between input types, we did this with both
phone labels (ph-) and articulatory features (ft-) input, resulting
in four models: ph-g2p, ph-rec, ft-g2p, and ft-rec.

3.2. Evaluation

We used the fine-tuned models to synthesize the same set of 100
unseen utterances and evaluated them in intelligibility and natu-
ralness. For intelligibility, we used an automatic speech recog-
nition (ASR) model1 fine-tuned from the “large” multilingual
checkpoint of the self-supervised learning model wav2vec 2.0
[23] on the 50-hour Frisian data set from Common Voice (v8)
[24]. It reports a word error rate of 16.25% on Common Voice’s
test set. We used the ASR model directly (without a language
model) on the synthesized utterances and calculated character
error rates (CER) for evaluation.

For naturalness, we used an automatic MOS (Mean Opin-
ion Score) prediction model that is based on and fine-tuned from
wav2vec 2.0 Base [23]. This follows the approach in [25]. Fol-
lowing the result of our work on efficient fine-tuning strategies
for MOS prediction in LRLs [26], we first pre-trained the model
on the BVCC data set [25] and then further trained it on the
neural-TTS-only SOMOS data set [27]. Both of these data sets
are in English. We then fine-tuned the model further on the
MOS data2 from our previous work [5]. This data contains
2,024 MOS ratings for 220 synthetic utterances (from 11 sys-
tems: 10 TTS and 1 resynthesis) rated by 46 participants. The
original 100-scale MUSHRA scores were linearly converted to
the 5-point MOS scale. We split this data into 80% training,
10% validation, and 10% test sets. Table 1 shows the prediction
accuracy of the fine-tuned model on the test set, measured in
MSE (Mean Squared Error) and LCC (Linear Correlation Co-
efficient, i.e., Pearson’s r). For LCC, corresponding p-values
were checked for statistical significance. We also include the
best-performing measures from the out-of-domain track (OOD)

1huggingface.co/wietsedv/
wav2vec2-large-xlsr-53-frisian

2phat-do.github.io/sigul22

of the recent VoiceMOS Challenge [28]. This OOD track is
similar to our settings in terms of cross-lingual MOS predic-
tion with limited ground-truth data. Table 1 shows that the fine-
tuned model has an adequate level of prediction accuracy, with
an MSE of 0.190 and an LCC of 0.821 for utterance-level pre-
dictions. Besides, the test set in this study (described in Sec-
tion 2.1) has many similarities with the fine-tuning data from
[5]: both are trained with data from audiobooks in Frisian, both
share the FastSpeech 2 architecture, etc. In short, we posit that
this fine-tuned model was suitable to be used for this study’s
evaluation and analysis.

Table 1: Fine-tuned MOS prediction accuracy

Level Metric Current VoiceMOS’s best

Utterance MSE 0.190 0.162
LCC 0.821 0.921

System MSE 0.074 0.030
LCC 0.946 0.988

4. Results & discussion
We used 100 test utterances for analysis, but for practical rea-
sons, we randomly picked out 20 utterances (140 audio sam-
ples) and shared them online for reference3. Figures 1 and 2
show the boxplots of CER and MOS for all systems described
in Section 3. For reference, we also included results from resyn-
thesized audio (generated from ground-truth spectrograms).

resynth ph-gt ph-g2p ph-rec ft-gt ft-g2p ft-rec
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Figure 1: CER on the test set (lower is better)
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Figure 2: Predicted MOS on the test set (higher is better)

We used a linear mixed effects model and treated input type
(ph and ft) and “dictionary type” (gt, g2p, and rec), plus their
interaction, as fixed effects. For random effects, we used ran-
dom intercepts for utterances and by-utterance random slopes
for both input type and dictionary type. Residual plots were

3phat-do.github.io/nodict-IS23
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used to check for assumptions of homoscedasticity and normal-
ity. Statistical significance was checked using p-values from the
likelihood ratio tests between models with and without each ef-
fect in question. The results from this show that input type, dic-
tionary type, and their interaction all had significant effects on
both CER and MOS. Therefore, we conducted a post-hoc anal-
ysis using Tukey’s multiple comparison of means [29] to check
if the mean CER and MOS of all scenarios (combinations of in-
put and dictionary type) were significantly different from each
other. To avoid cluttering, only relevant scenarios are included
in Table 2. Significant differences are in bold.

Table 2: Results from Tukey’s multiple comparison of means

Group 1 Group 2 µG2 − µG1 & p-value

Input Dict Input Dict CER MOS (predicted)

ph gt ft gt −0.045 .003 0.982 < .001

ph
gt

ph
g2p −0.026 .267 0.101 .386

gt rec 0.065 < .001 0.114 .341
g2p rec 0.092 < .001 0.004 .999

ft
gt

ft
g2p 0.055 < .001 −0.021 .999

gt rec 0.125 < .001 −0.543 < .001
g2p rec 0.070 < .001 −0.522 < .001

ph g2p ft g2p 0.035 .042 0.851 < .001
rec rec 0.014 .857 0.324 < .001

4.1. Input type comparison with ground-truth dictionary

With gt, ft decreased CER by 0.045 (±0.01) and increased
MOS by 0.982 (±0.05) compared to ph. In other words, with
all things equal (the same TTS architecture, training data, train-
ing procedure, evaluation method, etc.), using articulatory fea-
tures as input outperformed using phone labels for cross-lingual
transfer learning. This likely comes from the better learning ef-
ficiency hypothesized in Section 1.1. As a result, TTS for LRLs
is expected to benefit from this. This is at least with a non-
autoregressive (non-AR) architecture as used in this study, as
opposed to the AR architecture in [6].

4.2. Multilingual G2P & phone recognition

Phone labels input: Compared to gt, g2p did not significantly
change either CER or MOS. Meanwhile, rec increased CER by
0.065 (±0.01) compared to gt and 0.092 (±0.01) compared to
g2p. This means that with phone labels, using multilingual G2P
was a viable approach, giving output speech quality comparable
to that from the ground-truth dictionary. The phone recognition
approach was less effective, producing a similar level of natu-
ralness but worse intelligibility.

Articulatory features input: Compared to gt, g2p led to
an increase of 0.055 (±0.01) in CER, but no significant change
in MOS. However, rec increased CER by 0.125 (±0.01) and
decreased MOS by 0.543 (±0.04) compared to gt. This means
that with articulatory features, multilingual G2P was only com-
parable to the ground-truth dictionary in naturalness, and phone
recognition led to worse quality in both criteria.

Phone labels vs. articulatory features: For g2p, ft led to
both an increase of 0.035 (±0.006) in CER and an increase of
0.851 (±0.03) in MOS. For rec, ft had no effect on CER, but in-
creased MOS by 0.324 (±0.03). In other words, in the absence
of an actual pronunciation dictionary, articulatory features out-
performed phone labels in naturalness while performing either
worse or similarly in intelligibility. This is partially in line with

our hypothesis in Section 1.2.

4.3. Assumptions & limitations

Assumptions: We assumed that the use of CER calculated from
ASR predictions was relevant in evaluating the intelligibility
of synthetic speech, i.e., it is comparable to human evaluation.
This is especially notable since we used an ASR model without
a language model. Meanwhile, humans cannot really turn off
their language models [30]. For MOS evaluation, besides the
usual assumption that MOS can be reliably used to judge “nat-
uralness”, we assumed that our model was fine-tuned enough to
give scores representative of those made by human listeners.

Limitations: As mentioned in Section 2.2, Frisian was
among the G2P model’s training data (albeit with limited data).
Therefore, we could not reliably infer that the approach would
work equally well for truly unseen LRLs. For the phone recog-
nition model, since it relies on phone sets from PHOIBLE, its
performance would degrade for an LRL not among the 2,186
languages covered by this database. Even for a covered lan-
guage, the phone recognition model required some fine-tuning
before being directly integrated into the TTS pipeline due to its
base performance. This fine-tuning may require some expertise
in phonetics and/or the LRL, which may limit its applicability.

5. Conclusions & future work
In this study, we explored cross-lingual transfer learning from
English (LJSpeech) to West Frisian, using 15 minutes of audio-
book data. The output speech was evaluated with CER obtained
from an ASR model and MOS from an MOS prediction model,
both based on wav2vec 2.0. The results confirmed that using
articulatory features as input for the TTS acoustic model signif-
icantly outperformed using phone labels in both intelligibility
and naturalness. Accordingly, we believe that this approach is
beneficial for similar work in low-resource languages (LRLs).

For LRLs without available pronunciation dictionaries, we
propose two approaches. The first is doing grapheme-to-phone
(G2P) conversion directly in both training and synthesizing with
a massively multilingual G2P model. The second is creat-
ing a makeshift dictionary using a universal phone recognition
model. The results of our experiments indicated that the G2P
approach was generally comparable to a ground-truth dictio-
nary, while the phone recognition approach only showed com-
parable results in one case. Thus, G2P is a viable option in
almost all cases while phone recognition is more limited but re-
mains an option for LRLs that cannot benefit much from G2P.
The two approaches’ effects also differed between the input
types: articulatory features generally led to better speech qual-
ity than phone labels. These findings are expected to enable and
provide strategies toward developing TTS for the thousands of
LRLs that have no available pronunciation dictionaries.

Future research is planned to explore bypassing the in-
termediate step of phonetic transcriptions (to skip a potential
source of inaccuracy) and converting audio directly to articula-
tory features to be used in creating a makeshift dictionary.
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