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Abstract
Speech emotion recognition (SER) aims to detect the emotion
of the speaker involved in a given utterance. Most existing SER
methods focus on local speech features by stacking convolu-
tions and training all segments of an utterance with an utterance-
level label. Two deficiencies exist in these methods: i) learning
only local speech features may be insufficient for SER due to the
ambiguity of emotions; ii) consistent supervision of each seg-
ment may lead to label error propagation, as the true emotions
of some segments may not match the utterance label. To solve
the two issues, we first devise a global-local fusion network to
model both long- and short-range relations in speech. Second,
we tailor a novel head-k-pooling loss for SER tasks, which dy-
namically assigns labels for each segment and selectively per-
forms loss calculation across segments. We test our method on
the IEMOCAP and the newly collected ST-EMO dataset, and
the results show its superiority and stability.
Index Terms: speech emotion recognition, self-attention, tem-
poral convolution, negative sampling

1. Introduction
Emotion, as one of the basic paralinguistic information, con-
veys the user’s intention and status, which helps the speech in-
teraction system to improve user experience. Speech emotion
recognition (SER), aiming to identify human emotions from
speech, has been an active research field for decades [1, 2, 3].
It is widely used in numerous applications, such as intelligent
robots, automated call centers, and distance education [4, 5].

Recently, deep learning methods have garnered increasing
attention due to their powerful representation capabilities [6,
7, 8]. Particularly, convolutional neural network (CNN)-based
methods have seen substantial improvements in SER over tradi-
tional methods, as the inductive biases inherent to CNNs, such
as spatial locality and translation equivariance, are believed to
be helpful for learning sound speech representations [9, 10].
Earlier works use fixed-scale convolutional kernels to extract
emotion-related representations, but ignores the variation in the
expression of emotions at different scales [11, 12, 13]. Later,
work on multi-scale CNNs was proposed to address this issue,
such as Light-SERNet [9] and deep-CNN [14]. They proposed
to aggregate the information of multi-scale features extracted by
multiple branches of convolutional kernels with varying sizes.
Despite their modest success, these methods still suffer from
either emphasizing too much on local relationship modeling or
ignoring segment-level label mismatch.

For the first point, notice that most existing CNN-based
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Figure 1: Illustration of the head-k-pooling loss. In the exam-
ple utterance “这首歌 (this song)真好听啊 (is so nice)”, the
tone rises at the end of the utterance, so the emotional states of
the front segments are ambiguous, possibly neutral. Therefore,
instead of using all segments, we pick the top k% confident seg-
ments as decision-makers and only use them to compute loss.
The gradients are set to zero for those uncertain segments.

methods can directly capture the local relationship between ad-
jacent feature frames, but lack the ability to model the long-
term dependencies between temporally distant frames, which
may also be valuable for SER recognition [15, 16]. Recent
approaches also explore the self-attention mechanism [17] to
capture long-term relationships in speech for emotion detec-
tion [4, 18, 19]. Since self-attention can relate any two tem-
poral spans of the feature input, it comes naturally to integrate
self-attention and CNNs to model global and local temporal de-
pendencies for SER. For the second point, given an utterance,
current SER methods usually divide it into multiple segments
using fixed windows and hop lengths, then use the same label
to supervise each segment for training. However, the true emo-
tions of these segments may not match the original utterance
label. This is because the degree of human emotional inten-
sity is time-varying. Emotional variability can be represented
by two main dimensions: valence (a continuum from negative
to positive) and arousal (a continuum that varies from low to
high) [20]. Depending on the speaker’s individual pronuncia-
tion habits (e.g., variation in intonation and pitch), the valence
and arousal value of an utterance may not be maintained at the
same level over time. This means, as shown in Fig. 1, a Chinese
Mandarin utterance labeled as happy may also contain some
neutral segments. With this in mind, training all segments
with the original utterance label will introduce noise data and
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may lead to model performance degradation.
In this work, we propose a global-local relation fusion net-

work, named GLRF, for speech emotion recognition. The core
component of GLRF is its inherent global-local relation-aware
block (GLRA), where one branch specializes in local context
modeling (by temporal convolution) while another branch spe-
cializes in long-distance relationship modeling (by multi-head
self-attention). Besides, to reduce error propagation caused
by misallocation of segment labels, we design a novel head-
k-pooling loss for GLRF training, which enables the model to
pick the top k% confident segments to teach itself. More specif-
ically, we automatically select the top k% segments as decision-
makers according to the posterior probability of the current
emotion category output by the model, and these decision-
makers are trained using the same label of utterance. The re-
maining segments are treated as assistants. Under the current
emotion category, the gradients for those assistants are set to
zero, as it is uncertain whether these assistants have the same
emotion category as the decision-makers, and they may present
a neutral affective state. When performing negative sam-
pling, these assistants are only judged to be negative samples of
categories that differ greatly from the valence and arousal value
of the current emotion category. As an example shown in Fig. 1,
for an assistant segment of happy, we just assume that its class
is unlikely to be fear, sad, or angry and do not regard it as
a negative sample of the neutral class. To summarize, our
main contributions are as follows:
• We propose a GLRF, a novel architecture for speech emotion

recognition, which can efficiently capture both long-term and
short-term temporal dependencies in speech.

• We customize a head-k-pooling loss to enhance the training
of GLRF. This loss helps the model select the top k% of seg-
ments with the highest confidence based on posterior prob-
abilities, reducing errors caused by inaccurate segment label
assignments and minimizing the propagation of errors in the
training process.

• We introduced ST-EMO, the largest (153 hours) Chinese
Mandarin speech emotion dataset for advancing SER re-
search. In particular, ST-EMO covers some in-car driving
scenarios.

2. Method
Model Pipeline. Fig. 2 illustrates the overall architecture of
the proposed GLRF. Given a long-form utterance, we first split
it into several 2s segments by a sliding window of 1.8s over-
lap. We then extract the mel-frequency cepstral coefficients
(MFCCs) features per segment as input. During training, we
send each segment to GLRF and obtain the segment-level con-
fidence scores for all emotion categories by learning multiple
binary classifiers for each class vs. all other classes (i.e., one-
vs-rest). We then select segments with the top k% confidence
and train them with the same label as the corresponding utter-
ance via multiple binary cross-entropy losses. Below we detail
the core ingredient of GLRF, namely the global-local relation-
aware (GLRA) block, and head-k-pooling loss tailored for SER.

2.1. Global-Local Relation-Aware Block

Global-Local Relation Module. Formally, GLRF takes a set
of MFCCs features X∈RN×F×T as input, where N is the num-
ber of segments, T is the number of frames per segment, and
F denotes the feature dimension. To begin with, X is first tem-
poral convolved by a 1D convolution with a kernel size of 3,
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Figure 2: Illustration of the architecture design of GLRF as well
as the global-local relation-aware (GLRA) block.

followed by batch normalization and ReLU activation, yielding
the feature map of F0 ∈ RN×C0×T. F0 is then sent into the
GLRA block, which can be decomposed into global and local
relation-aware branches (see Fig. 2). The global branch model
global contexts by a normal multi-head self-attention module,
while the local branch captures local contexts by a composition
of temporal convolutions and linear layers. Both branches use
residual connections. Such a dual-stream approach places at-
tention and convolution modules in parallel, encouraging them
to have different views on the speech from global and local per-
spectives, so that the architecture can benefit from specializa-
tion and achieve higher efficiency.
Global-Local Fusion Module. Later, we fuse information from
two branches via gates. To determine the contribution of the in-
formation flow, gates need to integrate information from two
branches. This can be achieved through an element-wise sum-
mation. Then we apply global average pooling to generate
channel-wise statistics as s. Further, we compress s into a com-
pact feature z via a simple fully-connected (FC) layer for effi-
ciency. Next, z is distributed to calculate the attention scores of
each information flow. Finally, we multiply the normalized at-
tention scores by the results from two branches. After a GLRA
block, we get F1∈RN×C1×T. We stack multiple GLRA blocks
and perform max-pooling between two GLRA blocks to halve
the size of the temporal dimension T. The output of the final
GLRA block is fed into an FC layer for scoring each segment.

2.2. Head-k-Pooling Loss

It is common practice to segment an original utterance into mul-
tiple segments for data augmentation or to simulate streaming
speech input. However, due to differences in individual pro-
nunciation habits and variability in the distribution of arousal
values, segments in an utterance may not have a consistent emo-
tional state. For instance, in the utterance “这首歌真好听
啊”, the upscaling is concentrated at the end of the utterance,
so the emotional classes of the front segments are ambiguous,
and they may be neutral. Therefore, instead of using all seg-
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ments, we choose to use those most certain segments, referred
to as decision-makers, to guide the model. Formally, let N de-
note the number of segmented segments for an utterance. C is
the cardinality of emotion classes, and zji is the output logits of
the classifier for the i-th class in the j-th segment. For an utter-
ance labeled as emotion class i, we first select the K segments
based on the posterior probabilities by:

{`j}Kj=1=rank(k)
(

sigmoid(z1i ), . . . , sigmoid(zNi )
)

(1)

where rank(k) is an operator that returns the indices of the top
k% elements (k ∈ [10, 100],K = dk% · Ne), the `j indexes
the selected segment. Then the head-k-pooling loss for a single
utterance can be defined as:

L =
1

K

1

C

K∑

j=1

C∑

i=1

[y`j

i log(1+e−z`
j

i )+(1−y`j

i ) log(1+ez
`j

i )]

(2)

Negative Sampling. We perform negative sampling in unse-
lected segments. Two situations need to be carefully consid-
ered: 1) if the emotional state of an utterance is labeled as
neutral, it can be used as a negative sample for any other cat-
egory; and 2) if the current label of an utterance is non-neutral,
it can appear in the negative sample pool excluding current class
and neutral class. For example, segments labeled as happy in
an utterance are unlikely to be fear, sad or angry, but some
of them may be neutral.

3. Experiments
3.1. Datasets and Evaluation Protocols

We evaluate our model on the Interactive Emotional Dyadic
Motion Capture database (IEMOCAP) [21] and our collected
Chinese Mandarin dataset ST-EMO. Specifically, IEMOCAP
contains 12 hours of English audiovisual data divided into five
sections, each with scripted and improvised scenes recorded by
a male and a female professional actor. Scripted parts are per-
formed for predetermined emotions, while improvised parts are
closer to natural speech. Following previous works [2, 9, 22],
we first merge the two classes of excited and happy as they are
close in the valence and arousal (VA) domain [23], then se-
lect four types of emotions (i.e., angry, happy, sad, and neutral)
for experiments, and evaluate on the full (scripted+improvised)
dataset. ST-EMO comprises 153 hours of audio data, which
are divided into five emotion classes (i.e., angry, happy, sad,
neutral, and fear), and were recorded by 50 male actors and 50
female actresses in the text-independent, text-dependent, and
improvised scenario, respectively. Speaker age ranges from
20 to 41. ST-EMO was collected in several small rooms with
no background noise, using Android smartphones (48kHz, 16-
bit) fixed at a distance of 25cm directly in front of the ac-
tors/actresses. The duration of all utterances in ST-EMO ranges
between 1.0 and 17.2 seconds, with an average duration of 5.6
seconds, and over 91.2% of them range between 3 and 10 sec-
onds. Text-independent and text-dependent scripts are relevant
to everyday life, which resembles the SMP2020-EWECT [24]
and CPED [25] datasets. Statistically, the text-independent
section consists of 100 scripts, each of which was performed
by all actors/actresses with five distinct emotions, e.g., say-
ing the script “原来是有人送你回来” with five distinct emo-
tions. The text-dependent section includes 500 emotion-related
scripts, with each emotion corresponding to 100 scripts, and

Table 1: Statistics of the newly collected ST-EMO dataset.

Angry Happy Neutral Sad Fear All

Independent 9,132 5,818 9,644 8,760 7,048 40,402
Dependent 9,711 7,323 9,587 9,134 7,402 43,157
Improvisation 1,978 1,781 1,980 1,641 1,800 9,180
Full Dataset 20,821 14,922 21,211 19,535 16,250 92,739

Table 2: Performance comparison between GLRF and its coun-
terparts in terms of WA (%), UA (%), and Micro-F1 (%).

IEMOCAP ST-EMO
WA UA Micro-F1 WA UA Micro-F1

Deep-CNN 64.59 65.35 64.43 68.57 68.96 69.46
L-SERNet 68.21 68.10 68.15 71.23 70.01 71.52
GLAM 69.74 71.03 69.70 71.79 70.72 71.88
DRN-MHSA 66.67 67.56 66.73 69.92 68.64 70.48
AA-CNN 70.38 71.71 70.13 72.53 71.21 72.69
GLRF 72.81 73.39 72.92 75.33 73.88 75.29

all actors/actresses are required to perform each script with the
specific emotion, e.g., saying the script “这的确是个好消息，
赶紧告诉我的好朋友去” with happy emotion. The impro-
vised section contains 100 in-car scenarios, with each emotion
corresponding to 20 scenarios. For each scenario, actors and ac-
tresses are asked to speak freely with the specified emotion. For
instance, let the actor imagine a driving scene like “当你开车
上坡时，汽车在坡上溜车了” and act freely with the emotion
of fear. “好可怕，差点碰到后面的车了” may be a possible
response utterance.

After collecting the raw data, we denoised the data. For
each piece of data, we consulted four experts to judge its emo-
tion category. The data is considered valid only when the cate-
gories given by at least two experts are consistent with the orig-
inal label of the data. By this means, we got a total of 92,739
pieces of data. Table 1 lists the detailed statistics of the dataset.

Three commonly-used metrics are adopted for assess-
ment: weighted accuracy (WA), unweighted accuracy (UA),
and micro-F1 score. The difference between WA and UA is that
UA considers label imbalance in computing accuracy, while UA
does not. In the testing phase, the final prediction is obtained by
averaging the predictions over all segments in an utterance. In
addition, to gain a better understanding of the proposed loss,
we develop a new metric, called pure accuracy, to measure the
smoothness of model predictions. Under the criterion of pure
accuracy, a model’s prediction is deemed correct only if it sat-
isfies one of the following conditions: i) for a test utterance
labeled as non-neutral, the model must hit the current la-
bel at least once across all segments while allowing only the
neutral class to be present in the prediction results except the
current class; ii) for a test utterance labeled as neutral, the
model’s prediction for all segments must be neutral. Denote
by Nf the number of all utterances, Nc the number of utterances
identified as correct, and we have Pure-Acc=(Nc/Nf ) ·100%.

3.2. Baselines and Implementation Details

We take several strong SER baselines into account for
model comparison, including Deep-CNN [14], L-SERNet [9],
GLAM [23], DRN-MHSA [4], and AA-CNN [19]. It is note-
worthy that GLRF exhibits a significant departure from the
above methods. While certain methods like AA-CNN and
GLAM also use the attention mechanism or gMLP [26] to cap-
ture long-distance relationships, their attention is built on top of
multiple CNN layers. In contrast, GLRF runs the attention and
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Figure 3: Confusion matrix on the ST-EMO dataset.

Figure 4: Comparison of GLRF and other baselines on the
IEMOCAP and ST-EMO datasets with respect to pure accuracy.

CNN in parallel across various layers, thereby capturing global
and local contexts separately and allowing us to fuse emotional
information at different scales in a more fine-grained manner.

In our experiments, we apply the 5-fold cross-validation to
ensure reliability on IEMOCAP. We randomly select 80% of
the data for training and the remaining 20% for testing, follow-
ing [14, 19, 27]. We split the ST-EMO dataset into training and
test sets in a ratio of 8:2 with no speaker overlap. All compared
methods are run on the same data split while using their sug-
gested hyperparameter configurations. Furthermore, we fine-
tune all models to achieve their optimal performance. During
training, each utterance is split into 2s segments with 1.8s over-
lap, and during testing, each utterance is divided into 2s seg-
ments with 1.6s overlap. The MFCCs features of each segment
are extracted as input. Finally, the scores of all segments within
the same utterance are averaged to yield the prediction result.

3.3. Main Results

Table 2 illustrates that GLRF outperforms the state-of-the-art
methods by a substantial margin in all the listed metrics. No-
tably, GLRF exhibits a 2.43% absolute improvement in WA on
IEMOCAP compared to the current leading method, AA-CNN,
and a 2.8% absolute improvement in WA on ST-EMO. These
results fully demonstrate the superiority and effectiveness of
our model. For an in-depth analysis, we show the confusion
matrices derived from our model and AA-CNN in Fig. 3, to
clarify the model’s predictions for specific emotion categories.
It is evident that the model’s precision has exhibited the most
significant enhancement in the three emotional categories of
neutral, angry, and fear compared to AA-CNN, with a
remarkable surge of 3.64%, 3.22%, and 3.61%, respectively.

Pure accuracy is an SER evaluation protocol that takes the
predictions for each segment into account and is particularly
sensitive to sharp predictions (i.e., those with significant differ-
ences in the valence and arousal domain). Higher pure accuracy

Table 3: Ablations of the k on the IEMOCAP dataset.

k WA UA Micro-F1 Pure-Acc

10 68.11 69.39 67.91 51.14
30 69.83 71.24 69.62 53.96
50 72.09 73.11 72.15 55.87
70 72.81 73.39 72.92 56.62
90 71.77 72.40 71.84 55.42

Table 4: Ablation results of the GLRF’s core components on the
IEMOCAP dataset.

Ablation Settings WA UA Micro-F1

GLRF 72.81 73.39 72.92
wo/ Fusion Block 71.73 72.80 71.75
wo/ Global-Local 71.27 72.65 71.24
wo/ Head-k-Pooling 70.86 71.78 71.03

indicates smoother and more stable model predictions. As illus-
trated in Fig. 4, our model outperforms other methods in pure
accuracy, implying that GLRF is more suitable for streaming
deployment. In streaming SER scenarios, the model is required
to provide real-time predictions for each segment. Models with
higher pure accuracy tend to avoid the jump of predictions be-
tween different classes, leading to a better user experience.

3.4. Ablation Study

This section provides ablation studies to shed light on the effect
of each component of GLRF, as well as the proposed loss.
Impact of k in Loss Function. Table 3 presents the results of
GLRF trained on a range of k values. Note that k in the head-
k-pooling loss function denotes the percentage of segments that
contribute to the loss calculation (a.k.a. decision makers). As k
approaches 100, the head-k-pooling loss function degenerates
into the conventional cross-entropy loss. The table shows that
setting k = 70 yields the best performance, so we use it by
default in our experiments. Increasing k beyond this value leads
to a decrease in pure accuracy.
Effectiveness of Key Components. To elucidate the influence
of individual components in the GLRF, we conduct a compre-
hensive component analysis by iteratively replacing each com-
ponent with one from the full GLRF and evaluating the resul-
tant performance, as depicted in Table 4. Specifically, setting
(1) entails the substitution of summation for the fusion manner
in GLRA; setting (2) involves the replacement of global and
local branches with two convolutions (conv3×3 and conv5×5)
in GLRA; setting (3) corresponds to the substitution of head-
k-pooling loss with cross-entropy loss. Overall, the model per-
formance exhibits a considerable decline as each component is
replaced, verifying the efficacy of the proposed components.

4. Conclusion
In this work, we present GLRF, a novel architecture for speech
emotion recognition. It combines the strengths of convolution
and self-attention, performing local context modeling and long-
distance relationship modeling in parallel while capturing both
globality and locality. Furthermore, we tailor a head-k-pooling
loss to facilitate training on SER tasks, enabling the model to
teach itself by picking the most confident top k% segments.
Besides, we introduce ST-EMO, the largest Chinese Mandarin
speech emotion dataset for SER research. Experimental results
on two speech emotion benchmarks demonstrate the superiority
and stability of our model.

664



5. References
[1] K. Han, D. Yu, and I. Tashev, “Speech emotion recognition us-

ing deep neural network and extreme learning machine,” in Proc.
INTERSPEECH, 2014, pp. 223–227.

[2] A. Satt, S. Rozenberg, R. Hoory et al., “Efficient emotion recog-
nition from speech using deep learning on spectrograms.” in Proc.
INTERSPEECH, 2017, pp. 1089–1093.

[3] J. Santoso, T. Yamada, K. Ishizuka, T. Hashimoto, and S. Makino,
“Perfor-mance improvement of speech emotion recognition by
neutral speech detection using autoencoder and intermediate rep-
resentation,” in Proc. INTERSPEECH, 2022, pp. 4700–4704.

[4] R. Li, Z. Wu, J. Jia, S. Zhao, and H. Meng, “Dilated residual
network with multi-head self-attention for speech emotion recog-
nition,” in Proc. ICASSP, 2019, pp. 6675–6679.
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