AI can extend human capabilities but requires addressing challenges in education, jobs, and biases. Taking a responsible approach involves understanding AI’s nature, design choices, societal role, and ethical considerations. Recent AI developments, including foundational models, transformer models, generative models, and large language models (LLMs), raise questions about whether they are changing the paradigm of AI, and about the responsibility of those that are developing and deploying AI systems. In all these developments, is vital to understand that AI is not an autonomous entity but rather dependent on human responsibility and decision-making.
In this talk, I will further discuss the need for a responsible approach to AI that emphasize trust, cooperation, and the common good. Taking responsibility involves regulation, governance, and awareness. Ethics and dilemmas are ongoing considerations, but require understanding that trade-offs must be made and that decision processes are always contextual. Taking responsibility requires designing AI systems with values in mind, implementing regulations, governance, monitoring, agreements, and norms. Rather than viewing regulation as a constraint, it should be seen as a stepping stone for innovation, ensuring public acceptance, driving transformation, and promoting business differentiation. Responsible Artificial Intelligence (AI) is not an option but the only possible way to go forward in AI.