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Abstract
Commonly used features in spoken language identification

(LID), such as mel-spectrogram or MFCC, lose high-frequency
information due to windowing. The loss further increases for
longer temporal contexts. To improve generalization of the low-
resourced LID systems, we investigate an alternate feature rep-
resentation, wavelet scattering transform (WST), that compen-
sates for the shortcomings. To our knowledge, WST is not ex-
plored earlier in LID tasks. We first optimize WST features for
multiple South Asian LID corpora. We show that LID requires
low octave resolution and frequency-scattering is not useful.
Further, cross-corpora evaluations show that the optimal WST
hyper-parameters depend on both train and test corpora. Hence,
we develop fused ECAPA-TDNN based LID systems with dif-
ferent sets of WST hyper-parameters to improve generalization
for unknown data. Compared to MFCC, EER is reduced upto
14.05% and 6.40% for same-corpora and blind VoxLingua107
evaluations, respectively.
Index Terms: Language identification, Cross-corpora evalua-
tion, Wavelet scattering transform, ECAPA-TDNN.

1. Introduction
In the context of spoken language identification (LID), the
term low-resourced indicates the lack of large-scale multilin-
gual speech corpora with verified ground truths. Developing
effective low-resourced LID systems is important for multilin-
gual human-to-computer interaction applications for the global
population [1]. Often, the generalization of the low-resourced
LID systems is challenged due to training with a small in-house
developed corpus, which lacks diversities in non-lingual char-
acteristics [2]. Towards this, we aim to improve the generaliza-
tion of low-resourced LID systems by applying feature repre-
sentations that are robust against non-lingual variations across
multiple corpora. To assess generalization, we follow cross-
corpora evaluation protocols, which are particularly useful for
low-resourced scenarios [3].

Mel-spectrograms and mel frequency cepstral coefficients
(MFCCs), are one of the most widely used features in the
LID literature. Both these features were originally developed
for automatic speech recognition (ASR). By applying mel fil-
terbanks on short-time Fourier transform (STFT) representa-
tions, these features generate features resembling the output of
the cochlea [4]. The mel-based features further provide sta-
bility toward local time translation and deformation, usually
up to a window of 25ms [5]. This temporal span works well
for phoneme recognition purposes in ASR but may not be the
most suitable choice for recognizing languages, which requires
longer phonotactic information as well [6]. One of the key is-
sues with these features is the loss of information due to the

time-domain convolution with a low-pass filter due to window-
ing [5]. For classification tasks requiring a larger temporal con-
text, capturing these features over a longer temporal window
incurs even more information loss.

Hence, in this work, we introduce alternative representa-
tions in the LID task, that provide stability against deformations
and reduce information loss even with longer temporal contexts.
Mallat proposed wavelet scattering transform (WST) extend-
ing the MFCCs by computing modulation spectrum with the
cascaded application of wavelet filter banks and modulus non-
linearities [7]. Abiding by the Lipschitz continuity condition,
WST extracts stable representations for variations due to time-
shifts and time-warping deformations over a larger temporal
span without losing the high-frequency information [5]. In [5],
the authors applied WST for music genre and phoneme clas-
sification. Environmental sound classification was performed
utilizing WST in [8, 9, 10]. Bruna et al. [11] used scattering mo-
ments to synthesize audio textures. Joy et al. [12] applied scat-
tering power spectrum for speech recognition. In [13] and [14],
WST was applied for music processing applications. Recently,
the potentials of WST are explored in speech emotion recogni-
tion [15] and speaker recognition tasks [16].

However, to our knowledge, this is the first study applying
scattering networks in a LID task. Therefore, we first systemati-
cally formulate the work, starting by exploring the fundamental
questions: (Q1) What are the WST hyper-parameters suitable
for the LID tasks? (Q2) Are the optimized hyper-parameters
corpora dependent? (Q3) How much performance improve-
ments can we obtain from the conventional MFCCs by optimiz-
ing the WST hyper-parameters? (Q4) Is scattering transform
across the log-frequency dimension useful for LID? After an-
swering these fundamentals, we then focus on improving cross-
corpora LID generalization with WST features. The answer to
Q2 reveals the dependency of optimal WST hyper-parameters
on both training and evaluation data. Hence, concerning un-
known real-world test conditions, we develop multi-WST fu-
sion based LID systems encompassing the representations gen-
erated with different WST hyper-parameters.

2. Methodology
2.1. Shortcomings of Fourier-based representations

Consider a signal x(t) with its Fourier transform (FT) denoted
by x̂(ω). For a time-shift c expressed by xc(t) = x(t − c),
the corresponding FT is x̂c(ω) = e−iωc x̂(ω). The modulus
of FT removes the additional phase part e−iωc and makes the
representation translation invariant, |x̂c(ω)| = |x̂(ω)|. Let the
short-time Fourier transform (STFT) or spectrogram of x(t) is
defined as |x̂(t, ω)| =

∣∣∫ x(u)ϕ(u− t) e−iωu du
∣∣. Here, ϕ is

a window with duration T . For c << T , STFT is local time-
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shift invariance. However, STFT is not stable to time-warping
deformations, which often takes place with audio data [5]. Here,
the notion of stability is defined by the Lipschitz continuity con-
dition, which states that a transformed representation Φ(x) is
stable to deformation by amount supt |τ ′(t)| if,

||Φ(x)− Φ(xτ )|| ≤ C sup
t

|τ ′(t)| ||x|| . (1)

Here, C > 0 is a constant and measures the stability. Con-
sidering a deformation, τ(t) = ϵt, where 0 < ϵ ≪ 1 the
Fourier transform of xτ (t) = x(t − τ(t)) = x((1 − ϵ)t), for
|τ ′(t)| < 1, is x̂τ (ω) = (1− ϵ)−1 x̂((1− ϵ)−1ω). Hence, time
deformation leads to frequency translation of ϵ|ω|. Following
Eq. 1, we obtain || |x̂| − |x̂τ | || ≤ C ϵ ||x||. This implies that
Lipschitz continuity can be violated by spectrograms for higher
values of ω.

To impose stability against time-warping deformation, av-
eraging with mel filters (ψ̂λ(ω)), with center frequency λ is
done over spectrograms, i.e.,

Mx(t, λ) =
1

2π

∫
|x̂(t, ω)|2 |ψ̂λ(ω)|2dω , (2)

where, x̂(t, ω) is the FT of xt(u) = x(u)ϕ(u − t). The
time-domain equivalent of Eq. 2 is given as,

Mx(t, λ) =

∫ ∣∣∣∣
∫
x(u)ϕ(u− t)ψλ(v − u)du

∣∣∣∣
2

dv (3)

Now, if the length (T ) of window ϕ is much larger than the
temporal support of ψλ(t), we can consider ϕ(t) as constant
over the span of ψλ(t). Hence, considering ϕ(u − t)ψλ(v −
u) ≈ ϕ(v − t)ψλ(v − u) in Eq. 3,

Mx(t, λ) ≈
∫ ∣∣∣∣

∫
x(u)ψλ(v − u)du

∣∣∣∣
2

|ϕ(v − t)|2dv (4)

= |x ⋆ ψλ|2 ⋆ |ϕ|2(t) . (5)

The mel-filters ψ̂λ(ω) with center frequency λ have
constant-Q bandwidths (BW) at high frequencies. So, the BW
of ψ̂λ(ω) is λ/Q, which is sufficiently large at higher λs to
encompass stability to time-warping deformations. However,
as evident from Eq. 5, the windowing performed on the sig-
nal is equivalent to time averaging of spectrograms by the low-
pass filter ϕ(t). Hence, there is an inherent downside in mel-
spectrograms/MFCCs of high-frequency information loss. In-
stead of the standard window size, usually fixed to 25ms, if
some classification task demands a higher temporal context, the
risk of higher information loss restricts the usefulness of mel-
spectrograms/MFCCs. Hence, to restore the high-frequency in-
formation while maintaining stability to deformations over a
longer span, wavelet scattering transform can be used.

2.2. Wavelet scattering transform

Scattering transform applies cascade of wavelet transforms,
with constant Q-factor wavelet filters and modulus operators
for restoring high-frequency information lost due to averag-
ing. Consider, for λ > 0 a dilated wavelet band pass fil-
ter ψλ(t) = λψ(λ t) with frequency-domain representation

ψ̂λ(ω) = ψ̂
(

ω
λ

)
. The center frequency of ψ̂λ(ω) is λ (normal-

ized) and BW is λ/Q, with Q denoting the octave resolution of
wavelet filters. Hence, λ = 2k/Q with k ∈ Z. The wavelet
filters span the entire frequency range of the input signal. Each
filter ψλ(t) has a temporal span of 2πQ/λ. To ensure this span
is less than T , λs are only defined for λ ≥ 2πQ/T . For lower
frequencies [0, 2πQ/T ], Q− 1 equally spaced filters with BW

2π/T are designed. The wavelet transform of a signal x is ex-
pressed as:

Wx =
(
x ⋆ ϕ(t) , x ⋆ ψλ(t)

)
t∈R,λ∈Λ

. (6)

Here, ϕ is the low-pass filter with BW 2π/T and the set of all
higher (≥ 2πQ/T ) center frequencies are denoted by Λ. For
translation invariance, as a contractive non-linear operator [7],
modulus operation is applied over Wx:

|W1|x =
(
x ⋆ ϕ(t)︸ ︷︷ ︸
S0x(t)

, |x ⋆ ψλ1(t)|︸ ︷︷ ︸
U1x(t,λ1)

)
t∈R,λ1∈Λ1

. (7)

The first stage of the wavelet transform applies wavelets
with center frequencies Λ1 and resolution Q1. From Eq. 7, we
set S0x(t) = x⋆ϕ(t), which is locally translation invariant due
to averaging with ϕ. The term |x ⋆ ψλ1(t)| provides a time-
frequency representation of x where the varying bandwidth fil-
ters ψλ1 introduce the required deformation stability [5]. The
resultant representation is then low-pass filtered with ϕ so as
to capture long temporal context and is finally denoted as the
first-order scattering coefficients S1x(t, λ1) = |x⋆ψλ1 |⋆ϕ(t).

S1x(t, λ1), also known as scalogram, approximates mel-
spectrograms if Q1 = 8 [5]. The information lost in the scalo-
gram due to low-pass filtering is further retrieved by applying
the second stage of wavelet filters:

|W2| |x ⋆ ψλ1 | =
(
|x ⋆ ψλ1 | ⋆ ϕ︸ ︷︷ ︸

S1x(t,λ1)

, ||x ⋆ ψλ1 | ⋆ ψλ2 |︸ ︷︷ ︸
U2x(t,λ1,λ2)

)
λ2∈Λ2

.

(8)
From Eq. 8, we compute the second-order scattering coeffi-
cients (also referred as modulation spectrum) S2x(t, λ1, λ2) =
||x ⋆ ψλ1 | ⋆ ψλ2 | ⋆ ϕ(t) = U2x(t, λ1, λ2) ⋆ ϕ(t).

The second layer coefficients capture the information lost in
first layer over longer temporal context of ϕ. Usually, we follow
Q2 = 1 to capture the short-spanned transients and to generate
sparse representation [5]. Iteratively, we can apply successive
stages of modulus wavelet transform followed by low-pass fil-
tering to generate the higher-order scattering coefficients. For
decorrelation and to create invariance against multiplicative fac-
tors, at each layer, scattering coefficients are log-normalized by
the previous layer’s coefficients [5]. Algorithm 1 summarizes
the process of m-th order WST feature extraction.

2.3. WST for frequency transposition invariance

The WST can further be operated along the log-frequency
(logλ) axis of the scalograms for frequency transposition in-
variance. Frequency transposition is characterized by the inter-
speaker translation of spectral components in the log-frequency
scale, affecting the pitch and spectral envelope information [5].
The frequency-domain WST coefficient computation is similar
to time-domain WST, with t replaced by logλ. For LID tasks,
where robustness against speaker variability is important, the
exploration of frequency-domain scattering is interesting.

3. Experiment details
3.1. Database description

We use three most widely used South Asian LID corpora,
IIITH-ILSC [17] (IIITH), LDC 2017S14 [18] (LDC), and
IITKGP-MLILSC [19] (KGP) with five languages, Bengali,
Hindi, Punjabi, Tamil, and Urdu. IIITH and KGP data are pre-
partitioned in speaker disjoint train and test sets. We manu-
ally split the LDC data into speaker disjoint train and test sets
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Algorithm 1 Computing WST features up to order m > 1.
Input: x(t), Q1, Q2, · · · , Qm, ϕ

Output: S̃x

1: procedure (Applying cascaded modulus wavelet transform |W |
followed by averaging with ϕ )

2: U0x = x
3: for l = 1 : m do
4: |Wl+1|Ulx = (Slx , Ul+1x)
5: if l == 1 then
6: S̃1x(t, λ1) = log

(
S1x(t,λ1)
|x|⋆ϕ(t)+ϵ

)
▷ Log-normalization

7: else
8: S̃lx(t, λ1, · · · , λl) = log

(
Slx(t,λ1,··· ,λl)

Sl−1x(t,λ1,··· ,λl−1)+ϵ

)

9: end if
10: end for
11: S̃x =

(
S̃0x(t) , S̃1x(t, λ1) , · · · , S̃mx(t, λ1, λ2, · · · , λm)

)

12: end procedure

following 80 : 20 ratio. The three train sets are further split
into speaker disjoint train and validation sets using the same
ratio. The train set is further augmented and then sampled to
make it two folds following the augmentation procedure fol-
lowed in [20], which applied babble, music, noise samples, and
different room impulse responses as perturbations to the utter-
ances. All the utterances are re-sampled to 8 kHz and split into
3 s chunks. With the training and validation sets of each cor-
pus, we train three standalone LID systems. During the evalu-
ation, with the test sets of all three corpora, we perform same-
corpora and cross-corpora evaluations. We also use subset of
the VoxLingua107 corpus [21] as a blind evaluation set, entirely
unknown during the system development stages.

3.2. Data pre-processing and feature extraction

The audio signals are first processed with an energy-based
voice activity detector (VAD) to discard the silence-detected
frames. Then, we extract WST features with different hyper-
parameter sets, which include the temporal span (T ) of ϕ,
the order of WST coefficients (m) indicating the number of
layers, and octave resolutions (Q = [Q1, Q2, · · · , Qm]) at
each layer. We use Morlet wavelet and explore it for T =
[256, 512, · · · , 16384]. With the sampling rate of 8 kHz, it ap-
proximately covers the temporal span from 30ms to 2 s. How-
ever, for all three corpora, we found a prominent drop in LID
performance for T > 2048. Hence, we consider LID per-
formances up to T = 2048. For this range of T , the sig-
nal energy contained by the 3-rd WST layer onwards becomes
gradually negligible (< 1%). Hence, following [5], we set
m = 2. For Q1, we use values 2, 4, and 8. Following the
literature [5, 12, 15], to capture the finer temporal transients,
we set Q2 = 1. Similarly, for the frequency-domain WST, fol-
lowing the literature conventions [5, 15], we set m = 1 and
use octave resolutions (Qf ) between 3 to 8. Following Al-
gorithm 1, the time-domain WST features from the 0-th, 1-st,
and 2-nd layers are concatenated after log-normalization. The
frequency-domain WST features are appended with the time-
domain WST features for LID training and are finally processed
with cepstral mean subtraction (CMS). Following the South
Asian LID literature [22, 23, 3, 24] as baseline reference, we
also train the LID systems using 20-dimensional MFCCs with
25ms window, 10ms hop-length, 20 mel-filters, and processed
with CMS. Following NIST LRE and OLR challenge proto-
cols [25, 26], we use equal error rate (EER) and Cavg as per-
formance metrics.

3.3. Classifier description

From a computation perspective, WST is similar to the con-
volutional neural network (CNN) architecture, while the filters
are pre-defined, not learned [7]. Hence, after the hand-crafted
convolution layers, we use time-delay neural network (TDNN)
based stacks of dilated CNN layers. We use the ECAPA-
TDNN [27] architecture to train the LID models1. ECAPA-
TDNN extends the x-vector architecture [20] by replacing the
frame-level TDNN layers with squeeze-excitation-based resid-
ual blocks (SE-Res2), multi-layer feature aggregation, and a
channel attentive pooling layer. In different speech processing
tasks, this architecture is reported to outperform several other
TDNN-based models [24, 27, 28]. The classifiers are trained
end-to-end using 30 epochs and batch size 64. AdamW op-
timizer is used with additive margin (AM) softmax loss [29].
The learning rate (LR) is 0.001 following a reduce-on-plateau
based LR scheduler with patience of 5 and scale 0.1.

4. Results & discussions
4.1. WST hyper-parameters and LID performances

We first extract WST features with different hyper-parameter
sets by varying T and Q1 (as mentioned in Section 3) and train
LID systems using the training and validation data of each cor-
pus. The corresponding same-corpora evaluation performances
are presented in Table 1. We use EER values to denote the best
LID performances, which are used to find out the best hyper-
parameter set for each corpus. The best performing hyper-
parameter set for IIITH corpus (Ihp) is for T = 256 and
Q1 = 2 (denoted as Q in Table 1). Similarly, for LDC we
obtain Lhp for T = 1024 and Q = 2. For the KGP corpus,
the optimal hyper-parameter (Khp) is the same as Ihp. Two
key observations from Table 1 are: (i) all three corpora show
the best LID performance for Q = 2, indicating that highly lo-
calized frequency cues are not very crucial for LID tasks. (ii)
IIITH and KGP both contain broadcast news reads and has opti-
mal T = 256. Whereas LDC contains conversational telephone
speech (CTS) and has a higher optimal T = 1024. This obser-
vation indicates the requirement for a larger temporal context
for LID in spontaneous conversations. To illustrate how the
WST information is useful, in Fig. 1, we plot the modulation
spectrums averaged across the IIITH training utterances. The
plots show distinct 3D surface patterns for different languages,
indicating their efficacy in the LID tasks.

4.2. Impact of frequency-domain WST

For each corpus, we extend the best-performing time-domain
WST hyper-parameters by using frequency scattering (f-WST)
with Qf varying between 3 to 8. With the f-WST feature, we
train LID systems and report their performances in Fig. 2. For
comparison, we also present the best-performing time-domain
WST system’s LID performances and show that f-WST does
not improve performance. Hence, we only consider the time-
domain WST features in the subsequent experiments. We also
find that KGP corpus, with the lowest number of speakers
among the three corpora, exhibits the highest EER improve-
ment by varying Qf due to invariance for speaker variations
by f-WST. While IIITH, already having much larger speakers,
is inherently speaker-robust, and f-WST does not help much.

1https://github.com/Snowdar/asv-subtools
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Table 1: Impact of different WST hyper-parameters on LID performances (EER (%) / Cavg ∗ 100) using three LID corpora.

Corpus Baseline
MFCC

T = 256 T = 512 T = 1024 T = 2048

Q=2 Q=4 Q=8 Q=2 Q=4 Q=8 Q=2 Q=4 Q=8 Q=2 Q=4 Q=8

IIITH 9.74 / 11.51 7.53 / 8.20 7.56 / 8.14 7.75 / 8.87 8.35 / 9.71 7.92 / 9.11 10.73 / 11.41 12.58 / 14.16 12.69 / 13.96 12.58 / 14.16 15.25 / 15.79 19.16 / 20.32 20.66 / 20.72

LDC 21.86 / 25.70 17.10 / 19.99 17.64 / 20.41 18.70 / 21.88 13.24 / 15.80 14.38 / 16.53 13.86 / 16.63 12.87 / 15.41 14.61 / 17.74 13.53 / 16.09 14.99 / 16.51 15.59 / 17.73 15.48 / 18.57

KGP 12.36 / 8.75 5.55 / 5.83 8.21 / 7.51 8.10 / 7.91 8.00 / 7.75 8.12 / 8.12 7.00 / 6.62 9.75 / 9.00 13.00 / 13.00 9.00 / 8.62 19.00 / 18.37 15.12 / 15.12 22.00 / 21.62

Table 2: Cross-corpora LID performances (EER (%) / Cavg ∗ 100) using IIITH, LDC, and KGP with different WST hyper-parameters.

Train
corpus

Test
corpus

Baseline
MFCC

T = 256 T = 512 T = 1024 T = 2048

Q=2 Q=4 Q=8 Q=2 Q=4 Q=8 Q=2 Q=4 Q=8 Q=2 Q=4 Q=8

IIITH LDC 42.43 / 44.82 41.72 / 39.26 43.73 / 41.91 43.91 / 41.51 35.17 / 36.77 37.94 / 40.25 39.47 / 42.78 40.29 / 43.74 35.50 / 40.12 40.29 / 43.74 36.30 / 39.64 38.13 / 43.94 38.16 / 43.07
KGP 34.83 / 32.62 36.11 / 33.50 43.51 / 38.22 51.85 / 40.82 41.00 / 34.00 40.75 / 32.87 44.00 / 41.62 45.75 / 44.37 42.00 / 40.12 45.75 / 44.37 48.00 / 46.75 52.75 / 47.87 49.87 / 44.12

LDC IIITH 46.35 / 43.21 38.49 / 39.10 33.67 / 32.86 37.62 / 35.05 40.72 / 37.09 37.45 / 35.42 31.86 / 31.95 38.69 / 34.99 37.73 / 35.61 40.71 / 37.16 39.68 / 37.69 38.12 / 36.80 41.42 / 40.33
KGP 42.95 / 39.59 40.74 / 43.05 45.37 / 44.86 46.29 / 42.34 40.00 / 39.00 37.00 / 33.12 36.00 / 35.50 45.00 / 42.62 43.00 / 39.50 38.00 / 39.00 48.87 / 47.25 49.00 / 43.75 44.00 / 40.12

KGP IIITH 36.52 / 33.59 43.12 / 46.96 41.70 / 40.62 49.13 / 44.27 41.33 / 41.95 44.81 / 41.14 45.38 / 40.39 41.00 / 40.00 42.85 / 39.32 41.92 / 41.66 41.88 / 43.18 47.72 / 47.48 46.33 / 44.88
LDC 47.25 / 45.49 51.28 / 44.61 44.91 / 41.14 47.91 / 42.58 46.33 / 41.66 45.30 / 41.23 45.33 / 41.27 46.89 / 42.43 46.22 / 41.11 45.03 / 41.51 45.09 / 41.15 46.34 / 40.70 48.45 / 42.19

Figure 1: Visualization of modulation spectrum for each acous-
tic channel, averaged over the IIITH training utterances.
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Figure 2: Impact of f-WST octave resolution (Qf ) in LID per-
formances (EER(%)). Corresponding best performing time-
domain WST EERs are denoted by dotted lines.

4.3. Cross-corpora LID evaluation with optimized WST
hyper-parameters
The cross-corpora performances for the three used corpora are
presented in Table 2. As reported in different literature [24,
30, 31], we observe a prominent performance mismatch be-
tween the same-corpora and cross-corpora LID performances.
However, we observe some improvements in cross-corpora LID
performances with different WST hyper-parameters. Assume,
for the train-test pair of corpus M and N (M ̸= N ), the
best-reported cross-corpora LID performance is associated with
WST hyper-parameter (M -N)hp. Following this notation, in
Table 2, we observe that (M -N)hp ̸= (N -M)hp for all three
corpora. We also observe that (M -N)hp ̸= Nhp. Hence, the
choice of optimal WST hyper-parameters depends on both train
and test data. Hence, for deployment in unknown real-world
scenarios, fusion of LID systems trained with WST extracted
from different hyper-parameters are required.

4.4. Multi-WST LID system and blind evaluation

The optimal hyper-parameter sets for each corpus are decided
based on their same-corpora LID performances. To eliminate

Table 3: Blind evaluation (expressed as EER (%) / Cavg ∗ 100)
on VoxLingua107 for the multi-WST fused LID systems.

Training
corpus

Evaluation
corpus

Baseline
MFCC

Best
hp

Top-3
hp

Top-5
hp

IIITH
IIITH 9.74 / 11.51 7.53 / 8.20 4.55 / 5.80 4.89 / 6.10

VoxLingua107 36.20 / 35.59 36.28 / 34.60 32.88 / 32.07 32.92 / 32.07

LDC
LDC 21.86 / 25.70 12.87 / 15.41 8.65 / 10.20 7.81 / 10.00

VoxLingua107 44.28 / 43.58 38.56 / 38.60 38.31 / 38.30 37.88 / 37.70

KGP KGP 12.36 / 8.75 5.55 / 5.83 4.87 / 4.20 5.15 / 4.70
VoxLinua107 42.72 / 42.56 40.55 / 40.00 41.96 / 39.80 41.36 / 40.20

any human-in-loop intervention in the final assessment, we con-
duct a blind evaluation approach using VoxLingua107 [21] cor-
pus, following our earlier work [24]. We randomly select 500
utterances from each of the five languages. Repeating it four
times, we create four blind test sets, each with 500 utterances.
The average LID performances over all the blind test sets are
reported in Table 3. For each training corpus, we consider the
top-3 and top-5 WST hyper-parameter sets and fuse the corre-
sponding LID systems. We use logistic regression based score
fusion, 2 which are calibrated and trained with the validation set
logits. The top-3 fusion systems prominently outperform the
best-hp LID performance for IIITH and KGP. For LDC, top-5
fusion yields the best LID performance. From the MFCC base-
line, the blind evaluation EER is decreased by 3.32%, 6.40%,
and 2.17%, respectively, for the three training corpora.

5. Conclusions
To improve low-resourced LID generalization, we investigate
wavelet scattering transform (WST) as an alternate feature rep-
resentation. WST restores the high-frequency cues, which are
lost in MFCCs with higher temporal context, as modulation
spectrums. To our knowledge, this is the first work that explores
WST for LID tasks. Experiments on multiple corpora show that
LID tasks benefit the most with lower octave resolution in the
first scattering layer. For news-read speech, smaller temporal
context is desired, while the reverse holds true for conversa-
tional speech. We also find that frequency domain scattering is
not beneficial for LID. Further, our cross-corpora experiments
show that the optimal set of WST hyper-parameters is corpus-
specific. Hence, we develop multi-WST fused LID systems for
evaluation in unknown real-world scenarios. Compared to the
MFCC-based baseline, the proposed system improves EER up
to 14.05% and 6.40% for the same-corpora and blind cross-
corpora evaluations, respectively. In future, we aim to develop
an adaptive system to automatically obtain the optimal WST
hyper-parameters depending on the data characteristics.

2https://gitlab.eurecom.fr/nautsch/pybosaris
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