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Abstract
Text-based audio retrieval takes a natural language query to

retrieve relevant audio files in a database. Most retrieval models
are trained, optimized, and evaluated on a single dataset. In this
paper, we quantify the effect of adding training data using three
datasets and the effect on performance by evaluating the same
model on two datasets. For our study, first, we introduce a new
collection of about 5000 audio-text pairs called WavText5K.
We qualitatively show how WavText5K differs from audio-text
datasets and quantitatively show its effectiveness for retrieval.
Our results show that adding more audio-text pairs does not nec-
essarily improve performance. Second, we compare two effec-
tive audio encoders: CNN and audio transformers. We propose
an architecture that demonstrates that utilizing both encoders
improves the individual model’s performance. Overall, using
WavText5K and the proposed encoder combination outperforms
the benchmark for AudioCaps and Clotho by 6% and 23%.

1. Introduction
The audio-retrieval technology has numerous applications in
search engines, anomaly detection, and audio and video editing.
We will use audio-retrieval to refer to both text-audio and audio-
text retrieval in this work. The early works in audio-retrieval fo-
cused on using audio tags or events [5, 6, 7, 8]. With the avail-
ability of audio captioning datasets [1, 2, 4], the audio-retrieval
task was expanded to include natural language descriptions as
queries [9, 10]. The difficulty of building a high recall audio-
retrieval system is evident from the metrics in the first audio
retrieval Challenge at IEEE DCASE 2022 Task 6B[10].

The machine learning approach to audio-retrieval [4, 11, 9]
consists of an audio encoder and a text encoder that learns a
joint multimodal space. In literature, best results [11] are ob-
tained by training independent audio-retrieval models for each
target dataset. The direction of training on larger audio-text
pairs and its impact on audio-retrieval performance is not ex-
plored. Therefore, in this work, we evaluate and quantify the
effect of using multiple datasets in training without optimiz-
ing for a target evaluation dataset. We show that adding more
training datasets does not necessarily improve audio-retrieval
performance. We hypothesize that learning alignment between
acoustic information and descriptions is difficult from complex
audio scenes containing the occurrence of multiple audio events
and interactions, leading to a drop in performance. So we in-
troduce a new collection of audio-text pairs called WavText5K
consisting of audio recordings and descriptions focused on iso-
lated audio events. We describe what is isolated audio events
and how these are different from the existing datasets in Sec-
tion 2.2. From model architecture, the type of audio-encoder
has a significant impact on audio-retrieval performance. We ex-

plore and compare two main families of audio encoders: CNN
[12, 13] and Transformers [14, 15]. Recent literature has shown
audio transformers [13, 16, 15, 14] work well on a variety of
downstream tasks. However, the transformer models can intake
limited input patches and tokens. This is unfavorable for train-
ing audio-retrieval models which have to learn temporal depen-
dencies over 20-30 seconds of audio clips.

Our three main contributions are:
• We introduce a new 5000 audio-text pairs collection called

WavText5K focused on isolated audio events and their de-
scriptions.

• We quantify and show that adding more training data does
not necessarily improve audio retrieval performance.

• Our proposed architecture combines two well-established au-
dio encoders –a CNN and an audio transformer– outperform-
ing benchmark performance. Hence, answering two ques-
tions unknown a priori. 1) Would combining a CNN and a
transformer be redundant, or complement each other? 2) If
they complement each other, what is the performance gain?

2. WavText5K
In this section, we introduce WavText5K and describe the
unique sources of audio-text pairs, how the descriptions of the
audio content differ from other datasets, and a quantitative anal-
ysis of the data.

2.1. Dataset collection
WavText5K is available online1 and was sourced from two web-
sites that have not been used in any other collection to the best of
our knowledge: BigSoundBank2 and SoundBible3. In Table 2,
we compare WavText5K against the common datasets used for
audio retrieval, particularly in the first audio retrieval Challenge
at IEEE DCASE 2022 [10]. AudioCaps[1] is sourced from
YouTube videos, Clotho [2] is sourced from freesound.org,
MACS[3] is sourced from audio recorded in European loca-
tions, and SoundDescs[4] is sourced from the BBC website.

WavText5K is derived from two sound effects libraries that
are royalty-free and free to download. The BigSoundBank web-
site consists of sound effects in WAV, BFW, AIFF, MP3, OGG
format with audio title and audio descriptions available. The
SoundBible website consists of sound effects in WAV or MP3
with audio titles, descriptions. BigSoundBank has other meta-
data available like channels, conditions, sound type, bit depth
etc, which we did not collect. The sampling rate of audio files
varies, so we resampled all audio to 44.1 kHz. While collecting
the audio, we encountered empty audio files, incorrect down-

1 https://github.com/microsoft/WavText5K
2 https://bigsoundbank.com 3 https://soundbible.com
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Dataset Source Language Dur. (h) Audios Captions Max
dur.(s)

Avg
dur.(s)

Max
words

Avg
words Captions

AudioCaps [1] YouTube English 135.01 50535 55512 10.08 9.84 52 8.80 Human annotated
Clotho [2] FreeSound English 37.05 5929 29645 30.00 22.50 21 11.34 Human annotated
MACS [3] TUT English 11.88 3930 17275 10.88 10.88 40 9.24 Human annotated

SoundDescs [4] BBC English 1060.40 32979 32979 4475.38 115.75 65 15.28 Human-Automatic

WavText5K BigSoundBank
SoundBible English 25.48 4525 4348 2438.65 20.27 82 12.50 User-generated

Table 1: The captions of the first three datasets come from curated processes, SoundDescs’ are obtained automatically from descrip-
tions provided with the data, and WavText5K uses free-form descriptions provided by the uploader of the audio recording.

load links, and empty metadata. We removed those entries from
the final collection.

2.2. Description of isolated events

Source Description

AudioCaps Screeching and light banging
with a distant crow calling.

Clotho A crow crows loudly as a person
is heard imitating the sound.

MACS a crow is screaming in the background kids
are yelling then another bird is screaming.

SoundDescs
Birds - Birds, Madumbalai National Park, early
morning with close-up partridge calls,
warblers, crow-pheasants and house crow

WavText5K A single crow crying in the middle of the night
Table 2: Variability of captions.

WavText5K has audio-text pairs with natural language de-
scriptions that focus on isolated events rather than complex
acoustic content. In Table 2, we exemplify the variability in the
complexity of captions across the datasets in this study. The
captions in Clotho contain multiple sound events like “crow
crows and a person imitating the crow” and the same in MACS
“a crow screaming with kids yelling in the background along
with another bird”. SoundDescs has larger captions with mul-
tiple events in longer-duration audio recordings. In contrast
to this, the WavText5K caption focuses on “crow crying” and
provides a description of where and when (“the middle of the
night”) the event is happening. We show such audio-text pairs
help in improving audio-retrieval performance in Section 5.2.

WavText5K has free-form descriptions provided by the up-
loader of the audio recording. The captions of Clotho or Au-
dioCaps were designed primarily for audio captioning with cu-
rated annotation processes. SoundDescs was designed for audio
retrieval benchmarks and is considerably more varied in dura-
tion and audio content than the previous two. However, the text
descriptions are of mixed quality, since they are obtained au-
tomatically from descriptions provided with the original audio.
MACS had a curated process to annotate descriptions but was
not designed for any of these tasks. Due to the lack of captioned
datasets MACS has become popular.

2.3. Data analysis
We provide a breakdown of the statistics of the datasets of this
study in Table 1. WavText5K consists of 4525 audios, 4348
descriptions, and 4525 audio titles. The titles can be used to-
gether with the descriptions to form captions (see Section 5.4).
The number of audios in WavText5K is comparable to MACS
and Clotho. AudioCaps has the largest number of audios with
55,512 and SounDescs has 32,979. The average number of
words in WavText5K descriptions (12.5 words) is comparable
to other datasets. The average audio duration (20.27 seconds) is

Figure 1: Most frequent words in WavText5K descriptions.

longer than datasets like AudioCaps and comparable to Clotho.
To exemplify some of the audio events encountered in Wav-

Text5K, we plot the most common words in Figure 1. We ob-
tained the words from the descriptions, which are filtered to re-
move filler words. We can see that materials like “metal” and
“water” are the two most common terms.

3. Audio-retrieval with contrastive learning
We utilize the CLAP model [17] which jointly trains audio and
text encoder to learn a common multimodal space using con-
trastive learning. The trained audio and text encoder are then
later used to retrieve files for audio-text and text-audio retrieval.
The proposed architecture is shown in Figure 2.

3.1. CLAP Training
Let the training data be D = {(ai, ti)}i=N

i=1 . Let f(a) be the
audio encoder and g(t) be the text encoder which are learnable
embedding functions. Here, the audio encoder f(a) first con-
verts the raw audio into a log Mel spectrogram followed by a
learnable embedding function. For a batch size of b:

xa = {f(ai)}i=b
i=1;xt = {f(ai)}i=b

i=1 (1)

where xa ∈ Rb×v are the audio representations of dimension v,
and xt ∈ Rb×u are the text representations of dimension u. The
audio and text representation are brought into a common multi-
modal space of dimension d by independent linear projection
layers la(a), lt(t). This results in:

x̂a = la(xa); x̂t = lt(xt) (2)

where x̂a ∈ Rb×d and x̂t ∈ Rb×d. Once both audio and text
embeddings are in common embedding space, we can compare
their similarity as:

C = τ(x̂a · x̂⊤
t ) (3)
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Figure 2: The model is trained on audio-text pairs using CLAP. At testing/retrieval time, the trained encoders match the audio query to
descriptions (audio-text retrieval) or text query to audio files (text-audio retrieval) in the database.

where τ is a temperature parameter and the similarity matrix
C has b correct pairs in the diagonal. To learn the embedding
functions and projection layers we use symmetric cross-entropy
loss (L):

L = 0.5(ℓtext(C) + ℓaudio(C)) (4)

where ℓk = 1
N

∑N
i=0 log diag(softmax(C)) along text and

audio axis respectively

3.2. Audio Retrieval
After CLAP training, the model is used for audio-retrieval as
shown in Figure 2. The audio file(s) are embedded by audio
encoder ft and the descriptions by text encoder gt. This is fol-
lowed by independently projecting (lt, la) the embeddings into
common multimodal space and computing the similarity matrix
between the audio and text embeddings. This similarity matrix
is represented as C in Figure 2. For audio-text retrieval, top-
N descriptions are computed by picking the descriptions corre-
sponding to the top N values in similarity matrix C. Similarly,
for text-audio retrieval, top-N audios are computed by picking
the audios corresponding to the top N values in C.

3.3. Audio and Text encoder
The CLAP model [17] used PANN’s CNN14[13] as the audio
encoder and BERT as the text encoder. There have been recent
advances in audio transformer models [16, 15, 14] which show
comparable or better performance than CNN models. However,
the transformer models can intake limited input patches and to-
kens. For example, the HTSAT is trained with 10 seconds au-
dio clips. This is unfavorable for audio-text pair training where
the audio concepts and complex descriptions have temporal de-
pendencies which evolve over 20-30 seconds of audio. On the
other hand, the HTSAT (0.47 mAP) is better than CNN14 (0.38
mAP) in understanding sound events. So instead, we propose
using the combination of CNN14 and HTSAT as the encoder:

f(a) = Concat(CNN14(a), HTSAT (a)) (5)
In section 5.3, we show that the CNN14 and HTSAT comple-
ment each other and improve audio-retrieval performance. We
leave the investigation of unified models like Wav2Vec [18, 19]
and deep fusion for future work. For text encoder, we use
RoBERTa [20] instead of BERT which is a more robust text
encoder. We leave dynamic methods of combining audio em-
beddings like attention mechanisms [21, 22] for future work.

4. Experiments
4.1. Datasets
We use Clotho [2] and AudioCaps [1] for training the baseline
and their test sets for audio-retrieval model evaluation. We also

use MACS [3], SoundDescs [4] and WavText5K in the training
dataset for experiments in Table 3. For WavText5K, we use
4348 audio-text pairs which have both description and title.

4.2. Experimental setups
The audio files are resampled to 44.1 kHz and represented by
log Mel spectrogram. The log Mel spectrogram is constructed
with a hop size of 320, a window size of 1024, and 64 Mel
bins in the range of 50-8000 Hz. Each audio file is randomly
truncated to 20 secs for CNN14 and 10 secs for HTSAT. We
use SpecAugment [23] for augmenting audio files. The cap-
tions were not augmented or altered. The audio-text pairs are
randomly sampled to form batches during training. The projec-
tion dimension for CLAP is set to be 1024 and the temperate
τ is initialised to 0.007. We use Adam Optimiser [24] with the
learning rate of 10−4 which is reduced by a factor of 0.1 every
20 epochs for a total of 45 epochs. The model is trained on 8
GPUs with a batch size of 128.

5. Results and Discussion
In this section, we show how WavText5K helps to improve
audio-retrieval performance. We evaluate and quantify the ef-
fect of training an audio retrieval system on multiple datasets.
We show how our proposed architecture combining encoders
outperforms the benchmark.

5.1. Training with multiple datasets
Our baseline is a model trained on AudioCaps and Clotho and
the test set of either AudioCaps or Clotho are used to evaluate
the model’s performance for audio to text and text to audio re-
trieval. As noted in [4], the Clotho dataset is particularly more
challenging than AudioCaps due to its varied audio content dis-
tributed in 10-30 seconds audio files. This is unlike AudioCaps
which is limited in temporal dependencies to 10 seconds.

In Table 3 we show that adding more data (audio-text pairs)
to training does not necessarily improve performance. We used
CNN14 as an audio encoder and kept settings constant across
experiments. Adding MACS [3] (row 2 and row 6 in Table 3),
adds 17k audio-text pairs and leads to a drop in both audio-
text and text-audio retrieval performance. SoundDescs has 33k
recordings consisting of complex acoustic scenes and detailed
descriptions. The model is not able to utilize and learn from
SoundDescs audio-text pairs, as evident from row 4 and row 8
in Table 3. Authors in [25, 26, 27] reported similar conclusions
with self-collected audio-text pairs and did not provide numeri-
cal evidence to understand the effect in performance.

5.2. WavText5K improves performance
We hypothesize that learning alignment between acoustic infor-
mation and descriptions is difficult from complex audio scenes
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Text-Audio Retrieval ↑ Audio-Text Retrieval ↑
Training
dataset

Training
pairs (k)

Retr.
dataset mAP@10 R@1 R@5 R@10 R@50 mAP@10 R@1 R@5 R@10 R@50

AC, Cl 65k AC 45.28 33.07 67.30 80.30 95.74 25.65 39.76 73.72 84.64 97.04
AC, Cl, MACS 82k AC 44.42 30.91 65.10 79.10 94.71 24.88 37.33 68.73 81.67 96.22

AC, Cl, SD 98k AC 45.03 31.37 66.60 79.32 95.19 25.21 33.82 68.46 82.21 96.90
AC, Cl, WT5K 70k AC 46.57 33.42 68.00 79.95 96.42 26.30 38.68 70.35 84.1 97.44

AC, Cl 65k Cl 24.74 15.79 36.78 49.93 80.75 12.41 17.42 40.57 54.26 82.68
AC, Cl, MACS 82k Cl 24.55 14.79 37.60 48.52 80.10 11.61 16.45 38.94 52.72 81.92

AC, Cl, SD 98k Cl 23.85 14.39 35.73 49.14 80.03 11.88 17.71 40.19 54.02 84.01
AC, Cl, WT5K 70k Cl 25.85 16.48 39.58 52.46 82.00 12.87 18.47 44.02 57.51 86.03

Table 3: Experiments of training with different datasets: AC (AudioCaps), Cl (Clotho), MACS, SD (SoundDescs), WT5K (WavText5K).
All experiments use the same setting for training CLAP model with CNN14 audio encoder. R is Recall and mAP is mean Average
Precision

Text-Audio Retrieval ↑ Audio-Text Retrieval ↑
Exp - Audio

encoder
Training
dataset

Retr.
dataset mAP@10 R@1 R@5 R@10 R@50 mAP@10 R@1 R@5 R@10 R@50

Benchmark [11] AC AC - 33.90 69.70 82.60 - - 39.40 72.0 83.90 -
CNN14 AC, Cl, WT5K AC 46.57 33.42 68.00 79.95 96.42 26.30 38.68 70.35 84.10 97.44
HTSAT AC, Cl, WT5K AC 46.33 34.07 66.90 79.81 95.36 26.71 40.84 72.77 84.36 97.30

CNN14-HTSAT AC, Cl, WT5K AC 49.45 34.69 70.22 82.00 97.28 30.81 41.91 73.18 84.64 97.71
Benchmark [11] Cl Cl - 14.40 36.60 49.90 - - 16.20 37.50 50.20 -

CNN14 AC, Cl, WT5K Cl 25.85 16.48 39.58 52.46 82.00 12.87 18.47 44.02 57.51 86.03
HTSAT AC, Cl, WT5K Cl 22.62 14.24 36.11 49.29 82.47 10.15 16.36 38.37 50.43 81.15

CNN14+HTSAT AC, Cl, WT5K Cl 27.12 16.75 41.09 54.07 83.79 13.65 20.0 44.88 58.66 87.65
Table 4: The CNN and Transformer audio encoder complement each other and outperform the literature benchmark [11].

containing the occurrence of multiple audio events and inter-
actions, leading to a drop in performance. So we evaluated
WavText5K as training data in row 4 and row 8 in Table 3.
With about 5000 audio-text pairs focusing on isolated events,
both text-audio and audio-text performance improves. For the
harder Clotho evaluation, text-audio R@1 improves by 4.4%
and audio-text retrieval R@1 improves by 6%.

5.3. Audio encoder architecture
In Table 4, we show that CNN and the audio transformer com-
plement each other and improve audio retrieval performance.
CNN is the most common encoder in the audio retrieval liter-
ature, followed by audio transformers [28, 27]. However, they
have not been combined into one architecture. Other authors
have combined up to four encoders [25], but have not outper-
formed benchmarks like our architecture. In row 3 of Table 4,
the audio retrieval model with transformer-based audio encoder
HTSAT performs better than the CNN14 model on AudioCaps
evaluation. However, the CNN-based audio encoder (row 6)
performs better on Clotho evaluation where the recording is
20-30 seconds in length and more complex than AudioCaps.
By combining CNN14 and HTSAT, the audio retrieval models’
performance increases on all metrics for both the evaluation
datasets. Compared with benchmark [11] on row 1, our pro-
posed combination leads to an improvement on text-audio R@1
by 2.3% and 16.3% on AudioCaps and Clotho dataset respec-
tively. Similarly, for audio-text R@1, we see an improvement
of 6.4% and 23.5% on AudioCaps and Clotho respectively.

5.4. Caption construction in WavText5K
Titles in WavText5K have additional information which can be
combined with the descriptions to improve audio-retrieval per-
formance (See Table 5). Overall we suggest using the title
and descriptions for training models. We performed an abla-
tion study to understand the effect of caption construction using
“{title}” and “{description}” in addition to AudioCaps and
Clotho to train the model CNN14+HTSAT. On Clotho, using

T-A Retrieval ↑ A-T Retrieval ↑
Retrieval
dataset mAP@10 R@1 mAP@10 R@1

Desc. AC 49.54 34.77 30.48 40.16
Desc., Title AC 49.45 34.69 30.81 41.91

Desc. Cl 26.15 16.19 12.77 19.14
Desc., Title Cl 27.12 16.75 13.65 20.0

Table 5: Constructing the caption with the title and the descrip-
tion of WavText5K results in better retrieval performance.

caption as “{title}. {description}” provides about 3.5% and
4.5% improvement on T-A and A-T R@1 metrics against using
only “{description}” as caption. On AudioCaps, we observed
mixed results where performance decreases by 0.2% on T-A re-
trieval and increases on A-T retrieval by 4.4%.

6. Conclusion

We analyzed the effect of training audio-retrieval system on
multiple datasets and quantified its effect on audio-retrieval per-
formance on two publicly available datasets. We found that
adding more audio-text pairs or training datasets does not nec-
essarily improve audio-retrieval performance. We introduced a
collection of 5000 audio-text pairs called WavText5K which fo-
cus on isolated audio events and their descriptions. We demon-
strate quantitatively how adding WavText5K to training data
improves audio-text and text-audio retrieval performance, un-
like other datasets like SoundDescs and MACS. Our analy-
sis of audio encoder architecture shows that CNN and Trans-
former models complement each other, and their combination
achieves benchmark performance on both audio-retrieval eval-
uation datasets. Further exploration of the relation between the
quality of audio-text pairs and its effect on learning audio repre-
sentations can offer additional insights into making text-based
retrieval systems better.
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