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Abstract
Rich sources of variability in natural speech present significant
challenges to current data intensive speech recognition tech-
nologies. To model both speaker and environment level diver-
sity, this paper proposes a novel Bayesian factorised speaker-
environment adaptive training and test time adaptation approach
for Conformer ASR models. Speaker and environment level
characteristics are separately modeled using compact hidden
output transforms, which are then linearly or hierarchically
combined to represent any speaker-environment combination.
Bayesian learning is further utilized to model the adaptation pa-
rameter uncertainty. Experiments on the 300-hr WHAM noise
corrupted Switchboard data suggest that factorised adaptation
consistently outperforms the baseline and speaker label only
adapted Conformers by up to 3.1% absolute (10.4% relative)
word error rate reductions. Further analysis shows the proposed
method offers potential for rapid adaption to unseen speaker-
environment conditions.
Index Terms: Speech recognition, Conformer, Factorised
adaptation, Bayesian learning

1. Introduction
The majority of end-to-end (E2E) automatic speech recogni-
tion (ASR) systems [1], including those based on state-of-the-
art Conformer models [2], are usually trained and evaluated on
found speech data collected from a wide range of real-world
scenarios. Such naturalistic speech data is generally highly non-
homogeneous. Rich sources of variability are brought by mul-
tiple acoustic factors [3], for example, speaker characteristics,
background noise and recording channel conditions. The re-
sulting high degree of speech heterogeneity presents significant
challenges to current data intensive speech recognition tech-
nologies in multiple stages. These include both the construc-
tion of speaker and environment independent ASR systems, and
their fine-grained adaptation to individual users’ voice recorded
in diverse acoustic environments.

Prior researches in this direction to date have been largely
spearheaded into two separate areas with their respective fo-
cuses on either speaker adaptation [4], or speech enhance-
ment and environment compensation only [5]. In the first
area, auxiliary speaker-aware features that are based on i-vector
[6–8], x-vector [8, 9], feature-space maximum likelihood lin-
ear regression (f-MLLR) [9, 10], or extracted from speaker-
aware modules [11–13] are incorporated into various ASR mod-
els. Model-based speaker adaptation methods estimate speaker-
dependent (SD) parameters, which are implemented as either
internal DNN components [14, 15], or additional parameters
such as learning hidden unit contributions (LHUC) [16–18],
using the target speaker data during speaker adaptive training

and test time adaptation [19, 20]. In the second area, single-
channel based environment compensation [21–25] or multi-
channel based speech enhancement front-ends [26–31] are sep-
arately constructed and optionally further integrated with the
recognition back-end. Back-end model adaptation methods that
aim to compensate for the modelling mismatch against the un-
seen target environment have also been studied [32, 33].

A simple approach to handle the multifaceted data hetero-
geneity in natural speech is to separately model each user’s
voice recorded in diverse environments as different speakers.
However, this fails to account for the homogeneity over speaker-
level characteristics, leading to fragmentation of data and poor
generalization to unseen speaker-environment combinations.

An alternative and more general solution to such a prob-
lem is to structurally represent different factors of variability in
ASR systems [34–38]. For example, during the adaptive train-
ing stage [19, 39], speaker and environment characteristics are
“factored out” into their respective separately designed mod-
elling components (e.g., vector Taylor series [40], MLLR or
CMLLR [10, 41], or LHUC [16] transforms), thus the back-
bone ASR model can focus more on learning speaker and envi-
ronment invariant speech representations and their mapping to
spoken contents. During the test time adaptation stage, these
sources of variabilities can be flexibly “factored in” to model
any seen or unseen speaker-environment combination. Prior
researches in this direction were mainly conducted for con-
ventional GMM-HMM [34–36, 42, 43] and hybrid DNN-HMM
[37, 38] ASR systems. In contrast, existing researches on E2E
ASR systems represented by Conformer largely focus on mod-
elling only one source of variability, for example, speaker char-
acteristics [7,8,18,44], or environmental mismatch [31,45–47].

To this end, a novel factorised speaker-environment adap-
tive training approach is proposed in this paper to facilitate both
adaptive training and test time unsupervised adaptation of E2E
Conformer models. Speaker and environment level character-
istics are separately modelled using compact LHUC [16] or
hidden unit bias (HUB) [18, 48] transformations. These are
linearly or hierarchically combined to represent any speaker-
environment combination, observed in the training data or oth-
erwise. Bayesian estimation of the speaker or environment fac-
tor specific transforms is also utilized to mitigate the risk of
overfitting during test time unsupervised adaptation to the lim-
ited speaker or environment data. The acquired speaker and
environment homogeneity can be exploited for rapid adaptation
to the unseen speaker-environment combination. For example,
speaker specific transforms estimated in one environment can
be cached and reused in another environment. The main contri-
butions of the paper are summarized below:

1) To the best of our knowledge, this paper presents the
first work to investigate the model-based factorised adaptation
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Figure 1: Examples of Conformer E2E ASR models (grey box,
top), together with three model-based adaptation methods: a)
Conformer speaker adaptation using LHUC transforms; b) lin-
ear (superposition) factorised adaptation; and c) cascaded fac-
torised adaptation. Bayesian and deterministic estimations of
adaptation parameters are shown in the green box (bottom left).

for E2E Conformer models by structurally representing speaker
and environment factors of variability. In contrast, prior re-
searches on E2E ASR systems largely focus on modelling only
one source of variability [7, 8, 12, 15, 18, 31, 44–47].

2) The efficacy of the proposed Bayesian factorised adap-
tation approaches is consistently demonstrated on the 300-hr
WHAM noise corrupted Switchboard task. Experimental re-
sults suggest that our approach consistently outperforms the un-
adapted baseline and speaker label only adapted Conformer sys-
tems by up to 3.1%, 2.7% and 2.9% absolute (10.4%, 8.1%, and
8.2% relative) word error rate (WER) reductions on the noise
corrupted Hub5’00, RT02, and RT03 test sets respectively, be-
fore and after external language model rescoring is applied.

3) Further analysis shows that the proposed method of-
fers the potential for rapid adaptation to the unseen speaker-
environment combination by flexibly “factoring in” the already
estimated speaker and environment specific transforms. Fur-
thermore, their generic nature and the implementation details
described in this paper allow their further application to handle
two or more sources of variability in other E2E ASR tasks.

2. Conformer E2E ASR System
The Conformer [2] ASR model consists of an encoder module
and a decoder module, which are both based on multi-blocked
stacked architectures. The encoder module comprises a convo-
lutional subsampling module, a linear layer with dropout op-
eration, and stacked encoder blocks. Layer normalization and
residual connections are performed on all encoder blocks. More
details of Conformer components can be found in [49]. Fig. 1
shows an example of Conformer E2E ASR system.

For training the Conformer model, the following multi-task
criterion interpolation between connectionist temporal classifi-
cation (CTC) and attention error cost is adopted [50].

L = (1− λ)Latt + λLctc, (1)

where λ ∈ [0, 1] is a tunable hyper-parameter and empirically
set as 0.2 for training and 0.3 for recognition in this paper.

3. Conformer Speaker Adaptation
The key idea of LHUC adaptation [16,18] is to use the SD scal-
ing vector to modify the amplitudes of activation outputs. Let
rl,s denote the SD parameters for speaker s in the l-th hidden
layer, the speaker adapted hidden outputs can be given by

hl,s = hl ⊙ ξ(rl,s), (2)

where hl is the hidden activation outputs in the l-th hidden
layer, ⊙ is the Hadamard product operation, and ξ(·) is the
element-wise 2× Sigmoid(·) function.

Alternatively the SD transform that is added to the hidden
output as a bias vector [18,48] leads to the HUB adaptation. Let
ζ(rl,s) denote the bias vector for speaker s in the l-th hidden
layer. The speaker HUB adapted hidden outputs are given as

hl,s = hl + ζ(rl,s), (3)

where ζ(·) is the identity activation function.
LHUC and HUB can be further used for environment adap-

tation by learning an environment specific LHUC or HUB
transform, and a single joint speaker-environment transform to
model a particular combination of these two factors.

4. Factorised Conformer
Speaker-environment Adaptation

4.1. Linear Factorised Adaptation
Linear factorised adaptation (LFA) models the two acoustic fac-
tors using a linear interpolation between a speaker-dependent
(SD) transform and an environment-dependent (ED) transform,
as is shown in Fig. 1(b). Let nl,e denote the ED parameters for
environment e in the l-th hidden layer. The factorised adapted
hidden outputs for speaker s in environment e can be derived by

hl,s,e = hl ⊙ (βξ(rl,s) + (1− β)ξ(nl,e)), (4)

where β ∈ [0, 1] is a hyper-parameter that balances the weight-
ing between the speaker and environment factors. For example,
β = 1 and β = 0 lead to the LHUC speaker only adaptation
and environment only adaptation, respectively.

4.2. Cascaded Factorised Adaptation

In the cascaded factorised adaptation (CFA), the SD transform
and ED transform, which serve as either an LHUC scaling vec-
tor or a HUB bias vector, are cascaded into the Conformer hid-
den layers. This leads to the following four cases: 1) both trans-
forms are LHUC scaling vectors; 2) both transforms are HUB
bias vectors; 3) the SD transform is an LHUC scaling vector
while the ED transform is a HUB bias vector; and 4) the SD
transform is a HUB bias vector while the ED transform is an
LHUC scaling vector. For example, without loss of generality,
assuming that both transforms are applied at the same layer, the
above third case is shown in Fig. 1(c) and the factorised adapted
hidden outputs can be given by

hl,s,e = hl ⊙ ξ(rl,s) + ζ(nl,e). (5)

4.3. Estimation of Factorised Adaptation Parameters

Let Ds,e = {Xs,e,Y s,e} denote the data set for speaker s in
the environment e, where Xs,e and Y s,e are the acoustic fea-
tures and the corresponding supervision token sequences, re-
spectively. During unsupervised test time adaptation, the su-
pervision Y s,e of unseen test data need to be generated by
initially decoding the corresponding utterances using an un-
adapted baseline Conformer model, before serving as the tar-
get token labels in the subsequent adaptation. The SD and ED
parameters can be estimated by using the loss in Eqn. (1),

{r̂s, n̂e} = argmin
{rs,ne}

{L(D̄s,e; rs,ne)}, (6)

where D̄s,e is the union of all speaker’s adaptation data in a
given environment e, ∪i∈S Di,e, and all environment’s adapta-
tion data associated with a speaker s, ∪i∈E Ds,i.
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During adaptive training, the SD and ED parameters as-
sociated with the training data are jointly optimized with
the ”canonical” model parameters Θ that are independent of
speaker or environment characteristics. This is given as

{Θ̂, θ̂S , θ̂E} = argmin
{Θ,θS ,θE}

∑

s∈S

∑

e∈E
L(Ds,e;Θ,θS ,θE), (7)

where θS = {rs}s∈S and θE = {ne}e∈E are the SD and ED
parameter sets associated with training data, respectively.

4.4. Bayesian Learning of Factorised Adaptation

Bayesian learning [51] is adopted to model adaptation pa-
rameter uncertainty. Given limited adaptation data D̄s,e, the
Bayesian predictive distribution for a test utterance X̃s,e is∫∫

p(Ỹ s,e|X̃s,e, rs,ne)p(rs,ne|D̄s,e)drsdne, where Ỹ s,e

is the predicted token sequence and p(rs,ne|D̄s,e) is the joint
posterior distribution of the SD and ED parameters learned
from the adaptation data. Using variational inference, a
variational distribution q(rs,ne) is used to approximate the
joint posterior distribution p(rs,ne|D̄s,e), and inferred by
optimizing the hybrid attention plus CTC loss marginaliza-
tion L(D̄s,e) = (λ − 1) log

∫∫
pa(r

s,ne|D̄s,e)drsdne −
λ log

∫∫
pc(r

s,ne|D̄s,e)drsdne over the uncertain parame-
ters, rs,ne. The variational bound is given by

L(D̄s,e) ≤
∫∫

q(rs,ne){(λ− 1) log pa(D̄s,e|rs,ne)−

λ log pc(D̄s,e|rs,ne)}drsdne + KL(q(rs,ne)||p(rs,ne))

≜ Lint(D̄s,e; rs,ne) + LKL, (8)

where pa and pc are the attention and CTC based sequence
probabilities respectively, p(rs,ne) is the joint prior distribu-
tion of the SD and ED parameters. KL(·) is the KL divergence.
Since the SD and ED latent variables {rs,ne} are independent
of each other, the joint variational and prior distributions can be
modeled independently. The structured variational distributions
{q(rs) = N (µs

r,σ
s
r), q(n

e) = N (µe
n,σ

e
n)} and the prior

distributions {p(rs) = N (µ̄r, σ̄r), p(n
e) = N (µ̄n, σ̄n)} are

assumed to be standard normal distributions. Then the KL di-
vergence term LKL can be computed as closed form [18]. To
ensure that the loss Lint is differentiable, the Monte Carlo sam-
pling method is used to approximate it, which is given by

Lbayes ≈ 1

K

K∑

k=1

Lint(D̄s,e; rs
k,n

e
k) + LKL, (9)

where rs
k = µs

r + σs
r ⊙ ϵsk, ne

k = µe
n + σe

n ⊙ ϵek, ϵsk and
ϵek are the k-th sample drawn from standard normal distribu-
tions. In this paper, N (0,1) and N (0,0.001) are empirically
selected as the priors for LHUC and HUB parameters respec-
tively. The location of speaker and environment transforms
is empirically selected and fixed at the convolution subsam-
pling module. During adaptation, only one sample is drawn
in Eqn. (9). The Bayesian predictive inference integral is effi-
ciently approximated by the expectation of the posterior distri-
bution as p(Ỹ s,e|X̃s,e,µs

r,µ
e
n) during recognition.

5. Experiments
5.1. Experimental Setup

The widely used 300-hr Switchboard-1 conversational tele-
phone corpus (LDC97S62) [53] containing 4804 speakers is
utilized for training. The NIST 3.8-hr Hub5’00 (LDC2002S09,
LDC2002T43), 6.4-hr RT02 (LDC2004S11), and 6.2-hr RT03

a) Clean data c) Augmented noisy datab) Noisy data
utt-1
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utt-3

utt-n

utt-1
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Figure 2: Noisy data simulation: a) Original Switchboard
clean data, b) Non-augmented noise simulation, and c) Aug-
mented noise simulation of Sec. 5.1. d) Noise types in WHAM.

(LDC2007S10) test sets containing 80, 120, and 144 speakers
respectively are adopted for performance evaluation. The pub-
licly available noise WHAM database [54] which is recorded in
non-stationary ambient environments such as restaurants, cof-
fee shops, bars, parks, and office buildings is used as the noise
source. Two protocols to simulate noise corrupted data are:
1) Non-augmented noise simulation whereby each utterance
is randomly exposed to one of multiple environments with a
uniform distribution, as is shown in Fig. 2(b). 2) Augmented
noise simulation whereby each utterance is exposed to all dif-
ferent environments independently, as is shown in Fig. 2(c).
For the noise corrupted training data, the 300-hr Switchboard-1
data is mixed with ten types of noise at signal-to-noise ratios
(SNR) uniformly sampled from {−5, 0, 5, 10, 20}dB by the
non-augmented simulation. For the noise corrupted evaluation
sets, the test data is mixed with ten types of noise at SNRs uni-
formly sampled from {−15,−10,−5, 0, 5, 10, 20}dB. Three
additive noise types used for the evaluation sets are also used
in the training data simulation. Non-augmented noise simula-
tion is applied to all three NIST Hub5’00, RT02 and RT03 sets
for the first experiment presented in Table 1. To further analyse
the improvements from Bayesian factorised adaptation, the ex-
periments in Table 2 used 38-hr noise corrupted data derived by
applying augmented noise simulation to the Hub5’00 set.

The ESPnet recipe [2] configured Conformer model com-
prised 12 encoder and 6 decoder layers, each with 256-dim 4-
head attention and 2048 feed-forward hidden nodes. 80-dim
Mel-filter bank plus 3-dim pitch parameters were used as in-
put features, with byte-pair-encoding (BPE) tokens of size 2000
serving as decoder outputs. Two 2-D convolutional layers with
stride 2 were included in the convolution subsampling module.
SpecAugment [55] was used for Conformer training. The ini-
tial learning rate of the Noam optimizer was 5.0. The dropout
rate was set to 0.1, and the recognition model was averaged
over the last ten epochs. The log-linearly interpolated exter-
nal Transformer and Bi-LSTM language models (LMs), which
were trained on the Switchboard and Fisher transcripts using
cross-utterance contexts [56], were used for LM rescoring.

5.2. Experimental Results and Analysis
Performance of Bayesian factorised adaptation evaluated on
the non-augmented noise corrupted test sets are shown in Table
1. Several trends can be observed. a) Both the proposed linear
factorised adaptation (LFA) (sys.8-11) and cascaded factorised
adaptation (CFA) (sys.12-15) consistently outperformed the un-
adapted baseline (sys.1) and the adapted baselines (sys.2-4)
considering only speaker or environment variability across all
three test sets. The best operating point for LFA is β = 0.7
(sys.10), while the best adaptation configuration of CFA is the
“HUB-HUB” combination (sys.13). b) When Bayesian learn-
ing was further used to model LHUC and HUB parameters un-
certainty, additional WER reductions of up to 0.8% absolute
(Hub5’00, sys.18 vs. sys.10) were consistently obtained us-
ing Bayesian factorised adaptations (sys.18,19) over that of the

3344



Table 1: Performance (WER%) of adapted Conformer systems with/without Bayesian learning evaluated on the noise corrupted, non-
augmented Hub5’00, RT02 and RT03 sets, before and after external Transformer plus LSTM LM rescoring. “CHE”, “SWBD”, “FSH”
and “O.V.” stand for “CallHome”, “Switchboard”, “Fisher” and “Overall” respectively. † and ∗ denote a statistically significant
(MAPSSWE, α=0.05) WER difference [52] obtained over the baseline (sys. 1, 20) and the speaker adapted systems (sys. 3, 16, 21)
respectively. The SNR and noise type combinations that appear in the train set are defined as ”Seen” data, otherwise ”Unseen” data.

ID Method Adaptation Adapt.
Param.

Language
Model

Hub5’00 RT02 RT03 ALL
Speaker Env. CHE SWBD O.V. SWBD1 SWBD2 SWBD3 O.V. FSH SWBD O.V. Seen Unseen O.V.

1 Baseline ✗ ✗ -

✗

36.4 24.8 30.6 28.2 34.8 38.7 34.3 33.3 38.8 36.1 22.9 37.3 34.2
2

Single
Transform

LHUC ✗

Deter-
ministic

35.0† 24.2† 29.6† 27.1† 33.8† 37.9† 33.3† 31.9† 38.5 35.3† 22.5† 36.3† 33.3†

3 HUB ✗ 35.2† 23.8† 29.5† 27.2† 33.8† 37.7† 33.3† 32.2† 38.2† 35.3† 22.4† 36.3† 33.3†

4 ✗ LHUC 35.9† 23.8† 29.9† 27.2† 34.2† 38.5 33.7† 32.5† 38.1† 35.4† 22.3† 36.6† 33.5†

5 ✗ HUB 36.1 24.0† 30.1† 27.6† 34.2† 38.4 33.8† 32.9† 38.1† 35.6† 22.4† 36.8† 33.7†

6 Joint LHUC 36.3 24.6 30.5 28.1 34.6 38.7 34.2 33.3 39.7 36.6 23.0 37.5 34.4
7 Joint HUB 36.3 24.7 30.5 28.1 34.9 39.0 34.4 33.1 39.7 36.5 23.1 37.5 34.4
8 Linear

Factorised
Adaptation

(LFA)

LHUC (β = 0.3) 34.6†∗ 23.2†∗ 28.9†∗ 26.2†∗ 33.5† 36.8†∗ 32.5†∗ 31.9† 37.6†∗ 34.9†∗ 21.7†∗ 35.6†∗ 32.6†∗

9 LHUC (β = 0.5) 34.5†∗ 23.0†∗ 28.8†∗ 26.3†∗ 33.2†∗ 36.9†∗ 32.5†∗ 31.3†∗ 37.3†∗ 34.4†∗ 21.8†∗ 35.4†∗ 32.5†∗

10 LHUC (β = 0.7) 34.4†∗ 22.8†∗ 28.6†∗ 26.2†∗ 33.1†∗ 36.5†∗ 32.3† 31.2†∗ 37.2†∗ 34.3†∗ 21.4†∗ 35.3†∗ 32.3†∗

11 LHUC (β = 0.9) 34.3†∗ 23.1†∗ 28.7†∗ 26.9† 33.1†∗ 36.8†∗ 32.6†∗ 31.2†∗ 37.6†∗ 34.5†∗ 21.7†∗ 35.5†∗ 32.5†∗

12 Cascaded
Factorised
Adaptation

(CFA)

LHUC LHUC 34.5†∗ 23.6† 29.1†∗ 26.5†∗ 33.3†∗ 37.3†∗ 32.8†∗ 31.4†∗ 37.6†∗ 34.6†∗ 21.7†∗ 35.7†∗ 32.7†∗

13 HUB HUB 33.7†∗ 23.0†∗ 28.4†∗ 26.7†∗ 33.0†∗ 36.2†∗ 32.3†∗ 31.1†∗ 36.7†∗ 34.0†∗ 21.2†∗ 35.1†∗ 32.1†∗

14 LHUC HUB 34.3†∗ 23.1†∗ 28.7†∗ 26.8†∗ 33.4†∗ 37.0†∗ 32.7†∗ 30.9†∗ 37.3†∗ 34.2†∗ 21.2†∗ 35.5†∗ 32.4†∗

15 HUB LHUC 33.8†∗ 23.2†∗ 28.5†∗ 26.6†∗ 33.6† 37.0†∗ 32.8†∗ 31.2†∗ 37.5†∗ 34.4†∗ 21.5†∗ 35.5†∗ 32.5†∗

16 Single HUB ✗

Bayesian ✗

34.4† 23.1† 28.8† 27.0† 33.3† 37.1† 32.8† 31.3† 37.6† 34.6† 21.8† 35.6† 32.6†

17 Joint LHUC 35.0† 24.3† 29.7† 28.1 33.7† 38.1† 33.6† 32.2† 38.3† 35.4† 22.2† 36.5† 33.4†

18 LFA LHUC (β = 0.7) 33.1†∗ 22.4†∗ 27.8†∗ 25.9†∗ 32.8†∗ 36.1†∗ 32.0†∗ 30.4†∗ 36.9†∗ 33.8†∗ 20.9†∗ 34.8†∗ 31.8†∗

19 CFA HUB HUB 33.0†∗ 22.6†∗ 27.8†∗ 26.1†∗ 32.0†∗ 35.7†∗ 31.6†∗ 30.6†∗ 36.6†∗ 33.7†∗ 20.7†∗ 34.6†∗ 31.6†∗

20 Baseline ✗ ✗ -

✓

35.9 23.8 29.9 27.3 33.9 37.3 33.2 32.5 38.0 35.3 21.9 36.4 33.3
21 Single HUB ✗

Bayesian

34.0† 22.4† 28.2† 26.2† 32.5† 35.9† 31.9† 30.3† 36.8† 33.7† 20.7† 34.8† 31.8†

22 Joint LHUC 34.5† 23.5 29.0† 26.8† 33.0† 37.2 32.7† 31.5† 37.5† 34.6† 20.9† 35.8† 32.7†

23 LFA LHUC (β = 0.7) 31.6†∗ 21.8†∗ 26.8†∗ 25.4†∗ 31.6†∗ 34.8†∗ 30.9†∗ 29.7†∗ 35.3†∗ 32.6†∗ 19.7†∗ 33.6†∗ 30.6†∗

24 CFA HUB HUB 32.0†∗ 21.5†∗ 26.8†∗ 24.9†∗ 31.5†∗ 34.1†∗ 30.5†∗ 29.4†∗ 35.3†∗ 32.4†∗ 19.4†∗ 33.3†∗ 30.3†∗

comparable non-Bayesian adapted systems (sys.10,13). c) Con-
sistent WER reductions were retained after external LM rescor-
ing. Overall statistically significant WER reductions of 3.1%,
2.7%, 2.9% absolute (10.4%, 8.1%, and 8.2% relative) were
obtained by the proposed Bayesian CFA (sys.24) over the base-
line Conformer (sys.20) on the noise corrupted Hub5’00, RT02
and RT03 test sets respectively. d) Joint speaker-environment
adaptation (sys.6,7) using a single transform performed less
well due to the lack of factorization between speaker and en-
vironment, and fragmentation of adaptation data.

Table 2: Performance (WER%) of adapted Conformer sys-
tems evaluated on the 38-hr noise corrupted and augmented
Hub5’00 sets. † and ∗ denote statistically significant WER dif-
ferences [52] (MAPSSWE, α=0.05) over the baselines (sys. 1,
20) and joint speaker-environment adaptation (sys. 7, 17, 22).

ID Method Adaptation Adapt.
Param. LM 38-hr Augmented Hub5’00

Speaker Env. CHE SWBD Seen Unseen O.V.
1 Baseline ✗ ✗ -

✗

36.6 24.1 29.3 30.7 30.4
2

Single
Transform

LHUC ✗

Deter-
ministic

35.4† 24.0 28.8† 30.0† 29.7†

3 HUB ✗ 35.4† 23.4† 28.4† 29.7† 29.4†

4 ✗ LHUC 36.4 23.8† 29.1† 30.4† 30.1†

5 ✗ HUB 35.9† 23.8† 28.8† 30.3† 29.9†

6 Joint LHUC 35.1† 23.3† 28.3† 29.5† 29.2†

7 Joint HUB 34.9† 23.2† 28.0† 29.3† 29.0†

8

LFA

LHUC (β = 0.3) 34.3†∗ 22.8†∗ 27.7†∗ 28.8†∗ 28.6†∗

9 LHUC (β = 0.5) 34.1†∗ 22.4†∗ 27.2†∗ 28.6†∗ 28.3†∗

10 LHUC (β = 0.7) 34.1†∗ 22.1†∗ 27.0†∗ 28.4†∗ 28.1†∗

11 LHUC (β = 0.9) 34.0†∗ 22.4†∗ 27.3†∗ 28.5†∗ 28.3†∗

12

CFA

LHUC LHUC 34.3†∗ 23.0† 27.6†∗ 29.0†∗ 28.7†∗

13 HUB HUB 33.8†∗ 22.5†∗ 27.2†∗ 28.4†∗ 28.2†∗

14 LHUC HUB 34.0†∗ 22.9†∗ 27.5†∗ 28.8†∗ 28.5†∗

15 HUB LHUC 34.0†∗ 23.1† 27.6†∗ 28.8†∗ 28.6†∗

16 Single HUB ✗

Bayes ✗

34.9† 23.2† 28.1† 29.3† 29.0†

17 Joint HUB 34.5† 22.8† 27.6† 28.9† 28.6†

18 LFA LHUC (β = 0.7) 33.4†∗ 21.9†∗ 26.6†∗ 28.0†∗ 27.7†∗

19 CFA HUB HUB 33.3†∗ 22.3†∗ 27.0†∗ 28.0†∗ 27.8†∗

20 Baseline ✗ ✗ -

✓

36.0 23.3 28.5 30.1 29.7
21 Single HUB ✗

Bayes

34.4† 22.4† 27.6† 28.5† 28.4†

22 Joint HUB 33.7† 21.8† 26.5† 28.1† 27.7†

23 LFA LHUC (β = 0.7) 32.4†∗ 21.0†∗ 25.6†∗ 27.0†∗ 26.7†∗

24 CFA HUB HUB 32.3†∗ 21.1†∗ 26.0†∗ 26.9†∗ 26.7†∗

Performance of Bayesian factorised adaptation evaluated on
the augmented noise corrupted Hub5’00 set (38-hr) are shown
in Table 2. The trends found in Table 1 were still retained. Over-
all absolute WER reductions of 3.0% and 1.0% were obtained
by the Bayesian CFA (sys.24) over the baseline (sys.20) and the
joint speaker-environment adapted (sys.22) systems.
Potential for rapid adaptation:In the experiments of Table 3
where either the speaker transforms are estimated using speaker
level data in mismatched environments (sys.5), or the environ-
ment transforms are learned using environment level data with
mismatched speakers (sys.6), or both being mismatched against

the test data being adapted to (sys.7,8), factorised speaker-
environment adaptation consistently produced absolute WER
reductions of 1.1%-2.5% over the baseline un-adapted Con-
former (sys.1). In particular, the CFA factorised adaptation
with both speaker and environment mismatches produced per-
formance comparable to speaker only adaptation using the
matched environment (sys.7 vs. sys.2). These results sug-
gest that the proposed flexible factorization framework allows
the separately acquired speaker and environment homogeneity
by factorization to be exploited for rapid adaptation to unseen
speaker-environment combinations.

Table 3: Performance (WER%) of Bayesian factorised adapta-
tion using matched or mismatched transforms evaluated on the
3.8-hr subset of 38-hr noise corrupted Hub5’00 set. Five mis-
matched conditions are randomly selected for each utterance.

ID Method Speaker Transform Env. Transform Hub5’00 (mean±std)
CHE SWBD O.V.

1 Baseline - - 37.7 24.2 31.0
2 HUB

(Spk. adapt)
Matched Env. - 35.9 23.4 29.7

3 Mismatched Env. - 37.0±0.27 24.3±0.31 30.7±0.23

4
CFA

(HUB-HUB)

Matched Env. Matched Spk. 34.0 22.1 28.1
5 Mismatched Env. Matched Spk. 34.4±0.22 22.4±0.25 28.5±0.15

6 Matched Env. Mismatched Spk. 34.9±0.20 22.8±0.15 28.9±0.19

7 Mismatched Env. Mismatched Spk. 35.8±0.23 23.4±0.26 29.6±0.20

8 LFA (β = 0.7) Mismatched Env. Mismatched Spk. 36.3±0.26 23.6±0.32 29.9±0.22

6. Conclusions
The paper proposed a novel Bayesian factorised speaker-
environment adaptive training and test time unsupervised adap-
tation approach for Conformer models. Compact transforma-
tions were used to model speaker and environment level charac-
teristics separately, which were linearly or hierarchically com-
bined to represent any seen or unseen speaker-environment
combination. Bayesian learning was further utilized to model
the adaptation parameter uncertainty. Experiments on the 300-
hour WHAM noise corrupted Switchboard corpus showed that
the proposed Bayesian factorised adaptation produced up to
3.1% absolute (10.4% relative) WER reductions over the un-
adapted baseline Conformer system.
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[7] Z. Tüske et al., “On the limit of english conversational speech
recognition,” in INTERSPEECH, 2021.

[8] M. Zeineldeen et al., “Improving the training recipe for a robust
conformer-based hybrid model,” in INTERSPEECH, 2022.

[9] M. K. Baskar et al., “Speaker adaptation for wav2vec2 based
dysarthric asr,” in INTERSPEECH, 2022.

[10] M. J. Gales, “Maximum likelihood linear transformations for
HMM-based speech recognition,” COMPUT SPEECH LANG,
1998.

[11] M. Delcroix et al., “Auxiliary feature based adaptation of end-to-
end asr systems.” in INTERSPEECH, 2018.

[12] Y. Zhao et al., “Speech transformer with speaker aware persistent
memory.” in INTERSPEECH, 2020.

[13] L. Sarı et al., “Unsupervised speaker adaptation using attention-
based speaker memory for end-to-end asr,” in ICASSP, 2020.

[14] T. Ochiai et al., “Speaker adaptation for multichannel end-to-end
speech recognition,” in ICASSP, 2018.

[15] Y. Huang et al., “Rapid speaker adaptation for conformer trans-
ducer: Attention and bias are all you need.” in INTERSPEECH,
2021.

[16] P. Swietojanski et al., “Learning hidden unit contributions for un-
supervised acoustic model adaptation,” IEEE/ACM TASLP, 2016.

[17] X. Xie et al., “Bayesian learning for deep neural network adapta-
tion,” IEEE/ACM TASLP, 2021.

[18] J. Deng et al., “Confidence score based speaker adaptation of con-
former speech recognition systems,” IEEE/ACM TASLP, 2023.

[19] T. Anastasakos et al., “A compact model for speaker-adaptive
training,” in ICSLP, 1996.

[20] T. Ochiai et al., “Speaker adaptive training using deep neural net-
works,” in ICASSP, 2014.

[21] P. J. Moreno et al., “A vector taylor series approach for
environment-independent speech recognition,” in ICASSP, 1996.

[22] V. Stouten et al., “Model-based feature enhancement with uncer-
tainty decoding for noise robust asr,” Speech Communi., 2006.

[23] D. Yu et al., “A minimum-mean-square-error noise reduction al-
gorithm on mel-frequency cepstra for robust speech recognition,”
in ICASSP, 2008.

[24] T. Yoshioka et al., “Environmentally robust asr front-end for deep
neural network acoustic models,” Computer Speech & Language,
2015.

[25] M. Ravanelli et al., “Multi-task self-supervised learning for robust
speech recognition,” in ICASSP, 2020.

[26] M. L. Seltzer et al., “Likelihood-maximizing beamforming for ro-
bust hands-free speech recognition,” IEEE Transactions on speech
and audio processing, 2004.

[27] X. Anguera et al., “Acoustic beamforming for speaker diarization
of meetings,” IEEE/ACM TASLP, 2007.

[28] Y. Xu et al., “Joint training of complex ratio mask based beam-
former and acoustic model for noise robust ASR,” in ICASSP,
2019.

[29] J. Heymann et al., “Joint optimization of neural network-based
WPE dereverberation and acoustic model for robust online ASR,”
in ICASSP, 2019.

[30] J. Yu et al., “Audio-visual multi-channel integration and recogni-
tion of overlapped speech,” IEEE/ACM TASLP, 2021.

[31] W. Zhang et al., “End-to-end dereverberation, beamforming, and
speech recognition with improved numerical stability and ad-
vanced frontend,” in ICASSP, 2021.

[32] M. L. Seltzer et al., “Acoustic model adaptation via linear spline
interpolation for robust speech recognition,” in ICASSP, 2010.

[33] X. Chen et al., “An initial investigation of long-term adaptation
for meeting transcription,” in INTERSPEECH, 2014.

[34] M. Gales, “Acoustic factorisation,” in ASRU, 2001.
[35] Y. Wang et al., “An explicit independence constraint for factorised

adaptation in speech recognition.” in INTERSPEECH, 2013.
[36] M. Seltzer et al., “Factored adaptation using a combination of

feature-space and model-space transforms,” in INTERSPEECH,
2012.

[37] J. Fainberg et al., “Factorised representations for neural network
adaptation to diverse acoustic environments.” in INTERSPEECH,
2017.

[38] M. Kitza et al., “Cumulative adaptation for blstm acoustic mod-
els,” INTERSPEECH, 2019.

[39] M. Gales, “Adaptive training for robust asr,” in ASRU, 2001.
[40] A. Acero et al., “Hmm adaptation using vector taylor series for

noisy speech recognition.” in INTERSPEECH, 2000.
[41] C. J. Leggetter et al., “Maximum likelihood linear regression for

speaker adaptation of continuous density hidden markov models,”
Computer Speech & Language, 1995.

[42] M. L. Seltzer et al., “Separating speaker and environmental vari-
ability using factored transforms,” in INTERSPEECH, 2011.

[43] Y. Wang et al., “Speaker and noise factorization for robust speech
recognition,” IEEE/ACM TASLP, 2012.

[44] M. Zeineldeen et al., “Conformer-based hybrid asr system for
switchboard dataset,” in ICASSP, 2022.

[45] X. Chang et al., “End-to-end multi-speaker speech recognition
with transformer,” in ICASSP, 2020.

[46] R. Kumar et al., “End-to-end speech recognition with joint dere-
verberation of sub-band autoregressive envelopes,” in ICASSP,
2022.

[47] V. N. Sukhadia et al., “Domain adaptation of low-resource target-
domain models using well-trained asr conformer models,” in SLT,
2023.

[48] O. Abdel-Hamid et al., “Fast speaker adaptation of hybrid
nn/hmm model for speech recognition based on discriminative
learning of speaker code,” in ICASSP, 2013.

[49] A. Gulati et al., “Conformer: Convolution-augmented transformer
for speech recognition,” INTERSPEECH, 2020.

[50] S. Watanabe et al., “Hybrid ctc/attention architecture for end-to-
end speech recognition,” IEEE J-STSP, 2017.

[51] D. J. MacKay, “A practical bayesian framework for backpropaga-
tion networks,” NEURAL COMPUT, 1992.

[52] L. Gillick et al., “Some statistical issues in the comparison of
speech recognition algorithms,” in ICASSP, 1989.

[53] J. J. Godfrey et al., “SWITCHBOARD: Telephone speech corpus
for research and development,” in ICASSP, 1992.

[54] G. Wichern et al., “Wham!: Extending speech separation to noisy
environments,” in INTERSPEECH, 2019.

[55] D. S. Park et al., “SpecAugment: A simple data augmentation
method for automatic speech recognition,” in INTERSPEECH,
2019.

[56] G. Sun et al., “Transformer language models with lstm-based
cross-utterance information representation,” in ICASSP, 2021.

3346


