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Abstract
Learning-based methods have made impressive strides in

speech separation, and the implicit filter-and-sum network
(iFaSNet) stands out as a reliable multi-channel solution. Mean-
while, the TF-GridNet has achieved state-of-the-art perfor-
mance on the WSJ0-2mix dataset, indicating the underlying
capability of time-frequency (T-F) domain speech separation
methods. This paper investigates the possibility of construct-
ing a T-F domain filter-and-sum network that improves upon
the iFaSNet. In addition to optimizing the separation module,
we develop a narrow-band spatial feature as a cross-channel fea-
ture and a convolution module for context decoding. With these
enhancements, we redesign each module under the iFaSNet ar-
chitecture, which entirely operates in the T-F domain. Thus, the
proposed method is referred to as the TF-FaSNet. Experimental
results on fixed microphone array geometries show that the TF-
FaSNet outperforms the standard iFaSNet under all conditions
with similar model complexity.
Index Terms: Speech separation, multi-channel, time-
frequency domain, network model

1. Introduction
In recent years, end-to-end time-domain models incorporating
learned encoder-decoder modules as a direct replacement of the
short-time Fourier transform (STFT) have gradually dominated
speech separation under anechoic conditions since the inven-
tion of the time-domain audio separation network (TasNet) [1].
Since 2019, most research advances in single-channel speech
separation have been made using the time-domain model, such
as the convolutional time-domain audio separation network
(Conv-TaSNet) and its variants [2–12]. One of the latest time-
domain models [4] reports a substantial scale-invariant signal-
to-distortion ratio improvement (SI-SDRi) of 22.1 dB on the
WSJ0-2mix dataset [13]. Given the popularity of time-domain
models, a recent study has shown that T-F domain models
are beginning to demonstrate their advantages. TF-GridNet
[14], which operates in the T-F domain, achieves an impres-
sive 23.4 dB SI-SDRi on the WSJ0-2mix dataset, which sig-
nificantly outperforms all existing time-domain models. Fol-
lowing the dual-path recurrent neural network (DPRNN) [3]
and the time-frequency domain path scanning network (TFP-
SNet) [15], it proposes a novel multi-path architecture where
each block consists of an intra-frame spectral module, a sub-
band temporal module, and a full-band self-attention module.
By stacking multiple multi-path blocks, it learns the patterns of
the speech spectrogram in a grid-like manner and utilizes local
and global spectro-temporal information for separation. This
well-designed model illustrates the potential of T-F domain ap-
proaches.

Inspired by the conventional filter-and-sum beamformer,
the original filter-and-sum network (FaSNet) [16, 17] estimated
a set of beamforming filters with a neural network and later
performed filter-and-sum beamforming in the time domain. In
the consecutive work, the iFaSNet [18] adopted the encoder-
decoder architecture to estimate the filter in a learnable latent
space. Both the vanilla FaSNet and its implicit variant use
a stack of dual-path recurrent neural network blocks with the
transform-average-concatenate module (DPRNN-TAC) as the
separation module. In this work, we go one step further to ex-
plore how to integrate the multi-path architecture into the iFaS-
Net architecture adequately. The ultimate goal is to transform it
into a T-F domain model since the potential of the T-F domain
model has been shown in recent studies. To that aim, three
modifications to iFaSNet are investigated: (1) The proposed
method leverages a multi-path separation module to perform
complex spectral mapping [19–21] in the T-F domain as a sub-
stitute for DPRNN-TAC. In addition, a 2D positional encoding
is added to aid attention modules in learning spectro-temporal
information. (2) The proposed method employs narrow-band
feature extraction to exploit the inter-channel cues of different
speakers since the original design of TF-GridNet lacks cross-
channel information to address multi-channel conditions ade-
quately. (3) Since the multi-path separation module mainly con-
sists of long short-term memory (LSTM) modules and attention
modules, it is good at capturing content-based global interac-
tions. To add more local interactions, a convolution module is
added at the end of the separation module to exploit local fea-
tures effectively. Experimental results show that the proposed
method achieves better results than iFaSNet under various data
configurations while maintaining the same model size.

2. Proposed method
This work is based on the iFaSNet and aims to improve its per-
formance. Specifically, the DPRNN-TAC architecture, which
serves as its separation module, is replaced with a more pow-
erful multi-path architecture. To ensure compatibility with the
iFaSNet structure, the model is divided into five parts: encod-
ing, feature extraction, separation, context decoding, and decod-
ing, and other compatible components are designed to ensure
the multi-path network fits seamlessly into the five-part design.

As shown in Figure 1, five processing stages are indicated
with different colors from left to right. Figure 2 shows the struc-
ture of the multi-path network used in the proposed network,
and Figure 3 depicts the detailed structure of the rest processing
stages. The same network block is highlighted with the same
color for each processing stage.

The five-part design of the original iFaSNet is introduced
in Section 2.1. Then, Section 2.2 presents the proposed method
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Figure 1: The block diagram of the TF-FaSNet system.

(a) Separation module (b) Spectral & temporal module (c) Self-attention module

Figure 2: An overview of the separation module.

and three major transformations made to the original iFaSNet.

2.1. Implicit filter-and-sum network recap

For an N -speaker mixture signal recorded by an M -
microphone array in a noisy-reverberant setting, the ith frame
of the input mixtures from the M channels is denoted as
{ym

i }Mm=1 ∈ R1×L. The iFaSNet consists of five steps: (1) An
encoder transforms time-domain waveform ym

i into a feature
cmi ∈ R1×H0 in the latent space. Preceding and succeed-
ing E feature vectors are stacked before and after the center
feature cmi to form the context feature Cm

i ∈ R(1+2E)×H0 .
(2) To extract the channel-wise and cross-channel features, two
feature extraction modules receive the context feature Cm

i to
produce the compressed context feature ĉmi ∈ R1×H0 and
feature-level normalized cross correlation (fNCC) feature ŝm

i ∈
R1×(1+2E)2 . (3) The channel-wise and cross-channel features
are passed to the DPRNN-TAC separation module to generate
a feature vector g1

i ∈ R1×H0 as the separation cue. (4) A con-
text decoder receives the context feature Cm

i and the feature
vector g1

i to estimate the filters [ĥ1,n
i−E , . . . , ĥ

1,n
i , . . . , ĥ1,n

i+E ] ∈
R(1+2E)×H0 , where ĥ1,n

i denotes the ith frame estimated filter
for the nth speaker. The filters are then applied to the encoder
outputs, and mean-pooling is applied across 1 + 2E context
vectors:

z1,n
i =

1

1 + 2E

2E∑

j=0

c1,ni−E+j ⊙ ĥ1,n
i−E+j (1)

where ⊙ denotes the Hadamard product, and z1,n
i represents

the filtering result of the ith frame for the nth speaker in the
latent space. (5) A transposed 1D convolution layer transforms

the latent feature back to the waveform. Thus, the separated
speeches for each speaker {x̂n}Nn=1 are estimated by iFaSNet.

2.2. Time-frequency domain filter-and-sum network

2.2.1. Complex spectral mapping with separation module

Figure 2a shows the flowchart of the customized multi-path ar-
chitecture used in the proposed network. The concatenated fea-
ture denoted by [C;S] ∈ R2D×T×F is first fed into a 2D con-
volution layer followed by global layer normalization (gLN) to
obtain a D × T × F tensor. The tensor is subsequently sent
to B0 blocks of the separation module to refine the T-F em-
bedding progressively. In each block, the input tensor of the
bth block, denoted as Ġb ∈ RD×T×F , is first passed into the
intra-frame spectral module and the sub-band temporal module
to explore spectro-temporal information. Both modules have
the same structure, as shown in Figure 2b. The output of the
sub-band temporal module, denoted as

...
Gb ∈ RD×T×F , is then

fed into the full-band self-attention module. In this module, the
procedure is almost the same as that in the multi-head atten-
tion module proposed in [22]. However, instead of applying
linear projections, it utilizes a 2D convolution layer, a paramet-
ric rectified linear unit (PreLU) activation function, and a layer
normalization among the channel and frequency dimensions to
transform 3D inputs into 2D queries, keys, and values. After
the attention outputs are concatenated, they are reshaped to a
D × T × F tensor and passed to the same projection again.
The tensor is then added to input

...
Gb through a residual con-

nection, producing a tensor Ġb+1 as the input to the next block.
In addition to the original design of the full-band self-attention
module, a 2D positional encoding proposed in [23] is applied to
inject the spatial information into queries and keys to produce
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Figure 3: A flowchart of the proposed method. Three network
blocks are: (A) Narrow-band spatial feature extraction (B) Con-
text encoding (C) Context decoding.

location-aware attention scores. As shown in Figure 2c, the in-
put

...
Gb is a D × T × F tensor, and the 2D positional encoding

is added to queries and keys before projections. We believe it
can facilitate the training process by providing the spatial rela-
tionship among all complex components in different directions.

In the proposed network, since the multi-path architecture
is employed as the separation module, the way to generate es-
timation results should be reconsidered. Experiments in [14]
show that using TF-GridNet with mapping provides better re-
sults than masking. Hence, the proposed method directly per-
forms complex spectral mapping with a context decoder rather
than estimating filters to perform masking. As a result, the con-
text decoder output Z represents the predicted real and imagi-
nary (RI) components of each speaker.

2.2.2. Inter-channel narrow-band spatial features

For channel-wise features, extracting the contextual informa-
tion between the RI components within each channel is the main
focus, especially for the reference channel. Based on this intu-
ition, only the RI components of the reference channel denoted
as Ȳref ∈ R2×T×F are passed through a 2D convolution layer
to generate context feature C ∈ RD×T×F . Although this leads
to the sacrifice of inter- and intra-channel information of other
channels, it preserves the most critical contextual information
of the reference channel and, more importantly, facilitates sub-
sequent context decoding. As shown in Figure 3 Block B, the
context decoder receives the context feature C as one of the
inputs rather than getting the RI components of the reference
channel like in iFaSNet. We assume that it brings richer context
information to the context decoder, which benefits the decoder
in getting better results.

The task of extracting cross-channel information is as-
signed to another feature extraction module in parallel. With the
narrow-band technique introduced in [24–26], the module can
focus on exploiting the inter-channel cues of different speakers.
As shown in Figure 3 Block A, the input Ȳ ∈ R2M×T×F is
viewed as F narrow-band sequences with sequence length T
and the number of features 2M . Next, the F sequences are

passed to a 1D convolution layer to compute H1 dimensional
embedding for each sequence, obtaining Ṡ ∈ RF×T×H1 . A
layer of bidirectional LSTM and a fully-connected layer are
used to extract spatial information within each narrow-band se-
quence, and layer normalization is applied to maintain the sta-
bility of training. The output of the linear layer S̈ ∈ RF×T×H1

is added to Ṡ through a residual connection, and a 1D decon-
volution layer then transforms the hidden dimension of H1 to
D. Lastly, the context feature S ∈ RD×T×F is obtained by a
reshape operation.

2.2.3. Context decoding with a convolution module

Each block of the multi-path separation module can be divided
into two parts: a dual-path network formulated by the spectral
and temporal modules, and a self-attention network. Since both
networks aim to capture long-range global information, a con-
volution module is employed to gather local information on the
fine-grained features produced by the separation module as a
way to add some local interactions.

As shown in Figure 3 Block C, the concatenation of the
context feature C and the separation cue G is first passed to
a 2D convolution layer with 2D output channels, obtaining
Ż ∈ R2D×T×F . Based on [27,28], a structure that utilizes pre-
norm residual units and two linear layers combined with the sig-
moid linear unit (SiLU) activation and dropout is created. This
structure resembles the feed forward module in Conformer. To
incorporate local spectro-temporal information, B1 blocks of
group convolution are sandwiched between the two linear lay-
ers. Each group convolution consists of a 2D group convolution
(GroupConv2D) layer, a group normalization (GN) layer, and a
SiLU activation. The bth convolution block can be formulated
as:

Z̈′
b = SiLU(GN(GroupConv2D(Ż′

b))) ∈ RH2×T×F (2)

where Ż′
b and Z̈′

b denote the input and output of the bth con-
volution block, respectively. H2 is the number of hidden units
between two linear layers, which is restored to 2D by the sec-
ond linear layer. At last, a 2D deconvolution layer with 2N
output channels is applied to Z̈ for complex spectral mapping.
The inverse normalization and inverse STFT (iSTFT) are subse-
quently applied to context decoding result Z ∈ R2N×T×F for
signal re-synthesis.

3. Experiment configurations
3.1. Dataset

The proposed method is evaluated on a simulated multi-channel
two-speaker noisy speech dataset with fixed geometry micro-
phone arrays, the same as in [17]. The simulated dataset con-
tains 20000, 5000, and 3000 4-second long utterances sampled
at 16 kHz for training, validation, and test sets, respectively. For
each utterance, two speakers and one nonspeech noise are ran-
domly selected from the 100-hour Librispeech dataset [29] and
the 100 Nonspeech Corpus [30], respectively. An overlap ra-
tio between the two speakers is uniformly sampled between 0%
and 100% such that the average overlap ratio across the dataset
is 50%. The two speech signals are adjusted in time and scaled
to a random signal-to-noise ratio (SNR) between 0 and 5 dB.
The relative SNR between the combined power of the two clean
speech signals and the noise is randomly selected between 10
and 20 dB. For more specific settings, please refer to [17].
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Table 1: Comparison with other methods on the simulated 6-mic circular array dataset

Model # of param.
SI-SDR (dB)

PESQSpeaker angle Overlap ratio Average
<15° 15-45° 45-90° >90° <25% 25-50% 50-75% >75%

Mixture - -0.5 -0.4 -0.4 -0.4 -0.4 -0.4 -0.5 -0.4 -0.4 1.35
MC-TasNet-S 1.3M 7.6 7.8 8.3 8.4 13.0 9.0 6.3 3.7 8.0 1.54
MC-TasNet-L 2.6M 8.2 8.5 8.8 9.1 13.4 9.7 7.0 4.4 8.6 1.59
FaSNet-TAC-S 2.1M 7.6 9.8 11.4 12.2 14.1 11.2 9.0 6.6 10.2 1.77
FaSNet-TAC-L 3.5M 8.3 10.4 11.8 12.6 14.6 11.7 9.4 7.3 10.8 1.81

iFaSNet-S 2.0M 7.8 8.9 9.8 9.7 13.7 10.1 7.5 4.8 9.0 1.62
iFaSNet-L 3.3M 8.2 9.7 10.5 10.4 14.2 10.6 8.2 5.7 9.7 1.67

TD-GWF-iter.1 4.0M 11.2 13.2 14.3 15.1 17.3 14.5 12.2 9.7 13.4 2.03
TD-GWF-iter.2 11.9 14.0 15.2 15.9 17.8 15.2 13.2 10.6 14.2 2.17

MC-TF-GridNet-S 2.4M 13.6 14.4 15.1 15.8 18.6 15.4 13.3 11.5 14.7 2.66
MC-TF-GridNet-L 3.6M 13.7 14.6 15.6 16.4 18.8 15.8 13.6 12.0 15.1 2.72

TF-FaSNet 2.5M 14.8 15.4 15.8 16.1 19.3 16.2 14.2 12.3 15.5 2.81

3.2. Model evaluation and training configurations

The proposed method is compared with five baselines: (a) MC-
TasNet [31], a multi-channel version of a single-channel Tas-
Net system, achieved by using extra encoders to encode each
input channel signal. Its separator receives the concatenated
features for further operations. (b) FaSNet-TAC [17], which is
FaSNet with transform-average-concatenate (TAC) module. (c)
iFaSNet [18], introduced in the previous section, is a variant of
the FaSNet-TAC system. (d) TD-GWF [32], the Time-Domain
Real-Valued Generalized Wiener Filter, is a novel sequential
beamforming pipeline that performs iterative beamforming and
separation. Both its pre-separation module and post-separation
module are set to FaSNet-TAC. (e) MC-TF-GridNet [14], a
multi-channel version of TF-GridNet. Similar to (a), the single-
channel TF-GridNet system is extended by stacking 2M RI
components and modifying the input channel of the first 2D
convolution from 2 to 2M , where M denotes the number of
microphones. The benchmark systems consist of two settings:
a small setting indicated by ”-S” and a large setting indicated
by ”-L”. However, the iterative model, TD-GWF, is labeled dif-
ferently, with the number of iterations denoted as ”-iter.1” or
”-iter.2”.

All models are trained with the Adam optimizer [33] for
100 epochs starting with an initial learning rate of 0.001. The
scale-invariant signal-to-distortion ratio (SI-SDR) is used to
evaluate the speech separation performance. The learning rate
is halved when the validation loss does not decrease in 3 con-
secutive epochs. Training is stopped when it does not decrease
in 10 consecutive epochs (early stop), and gradient clipping is
applied with a threshold of 1.

The implementation of TF-FaSNet is available online1.

4. Results and discussions
In Table 1, the performance of the proposed method is com-
pared with those of others over the simulated 6-microphone
circular array dataset. As shown in the table, all T-F domain
methods based on multi-path architecture obtain better SI-SDRi
than DPRNN-based methods (FaSNet-TAC, iFaSNet), which
indicates that by integrating full-band and sub-band modeling
on complex components, T-F domain models can further im-
prove the overall performance. One observation is that iFaS-

1https://github.com/JonathanDZ/TF-FaSNet

Net produces a poor overall result compared to FaSNet-TAC.
This is probably due to its poor performance on mixtures with a
high overlap ratio since the performance gap between FaSNet-
TAC and iFaSNet becomes more significant as the overlap ra-
tio increases. However, for smaller speaker angles, the per-
formance of iFaSNet can match or even exceed the perfor-
mance of FaSNet-TAC, suggesting that the iFaSNet architec-
ture may be able to use spatial information more efficiently to
discriminate speakers from different angles. This phenomenon
is also reflected in the proposed network. Compared to MC-
TF-GridNet, the proposed method performs significantly better
for smaller speaker angles. A possible explanation for this is
that the iFaSNet architecture combined with the narrow-band
method can better exploit the spatial information from different
microphones to identify the spatial cues of different speakers.
Another improvement is that for mixtures with different over-
lap ratios, TF-FaSNet has a consistent improvement in SI-SDRi
compared to MC-TF-GridNet, rather than having a noticeable
performance degradation as the overlap ratio gets higher, like
iFaSNet. This improvement is probably due to the context de-
coding design, which helps the network more efficiently extract
contextual information from non-overlapping signals to distin-
guish different speakers. This experiment shows that although
iFaSNet performs poorly on the fixed array dataset, and a large
portion of the overall performance improvement is contributed
by the multi-path architecture, by integrating iFaSNet architec-
ture, the proposed method manages to improve the performance
with a modest number of parameters increase. As a result, the
proposed method outperforms other benchmark methods with a
relatively small model size in most conditions.

5. Conclusions
This paper introduces a novel approach to multi-channel speech
separation that improves upon existing methods. The proposed
approach involves transforming each module of the iFaSNet
architecture to perform separation in the time-frequency do-
main, building on recent progress in monaural speech separa-
tion. Three major changes were made to the model to achieve
this, including the use of a multi-path separation module with
2D positional encoding, a narrow-band spatial feature as the
cross-channel feature, and a convolution module for context
decoding. The experimental results indicate that the proposed
method is superior under the experimental conditions.
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