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Abstract
Surgical phase recognition is a challenging and necessary task
for the development of context-aware intelligent systems that
can support medical personnel for better patient care and ef-
fective operating room management. In this paper, we present
a surgical phase recognition framework that employs a Multi-
Stage Temporal Convolution Network using speech and X-Ray
images for the first time. We evaluate our proposed approach
using our dataset that comprises 31 port-catheter placement op-
erations and report 82.56 % frame-wise accuracy with eight sur-
gical phases. Additionally, we investigate the design choices in
the temporal model and solutions for the class-imbalance prob-
lem. Our experiments demonstrate that speech and X-Ray data
can be effectively utilized for surgical phase recognition, pro-
viding a foundation for the development of speech assistants in
operating rooms of the future.
Index Terms: surgical workflow, surgical phase recognition,
speech assistant, port-catheter placement, TCN

1. Introduction
Modern operating rooms (ORs) are optimized for better patient
care and the most effective utilization of medical resources. Ad-
vances in technology are presented in ORs with cutting-edge
surgical tools, monitoring, and navigation systems. These sys-
tems enable physicians to perform more complex surgical pro-
cedures with a high success rate that was not possible before [1].
Simultaneous to these advances, the amount of data created by
modern medical systems is increasing [2]. This data is neces-
sary for the successful execution of the operation and needs to
be processed by the medical personnel after or during opera-
tions. It has been proposed that intelligent systems processing
this growing amount of information and projecting it in the cor-
rect time and format will be vital in the future of ORs [3, 4].

Surgical phase recognition (SPR) is a topic of automatically
extracting semantic information from ongoing or recorded sur-
gical operations by recognizing different predefined phases [5].
The highest level actions performed in the operating room, such
as anesthesia, sterilizing, or cutting, are referred to as surgical
phases. Robust estimation of these phases is a prerequisite for
the development of the envisioned context-aware intelligent as-
sistants in the OR.

The majority of studies in SPR focused on laparoscopic
cholecystectomy, removal of the gallbladder, through endo-
scopic videos [6, 7, 8, 9, 10]. Microscopic videos are an-
other popular source of information used mainly for cataract
surgeries [11, 12, 13]. Sensory data from robotic surgeries
are considered together with surgical videos in several stud-
ies [14, 10]. As these modalities are not used in every oper-
ation, it is not possible to cover all types of operations with

endoscopic and microscopic videos. Moreover, these data are
typically recorded inside or near the body and do not contain in-
formation about the environment of the OR. Despite the grow-
ing interest in SPR, the use of speech and audio data has re-
ceived little attention [15]. Guzmán-Garcı́a et al. [16] extracted
Spanish transcriptions from 15 online education videos on la-
paroscopic cholecystectomy and achieved 82.95 % accuracy in
surgical phase recognition. Seibold et al. [17] used discrete seg-
ments from the German audio dataset of five total hip arthro-
plasty operation for the phase recognition task and recognized
seven phases with 95.60 % accuracy. We hypothesize that using
speech and audio is a necessary direction in SPR as it can open
the way for various applications based on natural language pro-
cessing (NLP) and enable the development of interactive smart
assistants in ORs.

In this study, we propose a novel approach for SPR us-
ing speech and X-Ray images collected during port-catheter
placement operations. Our method utilizes Multi-Stage Tem-
poral Convolutional Network (MS-TCN) [18] architecture and
past estimations for temporal modeling, leverages wav2vec
2.0 XLSR-53 [19] representations for speech signals and
TorchXRayVision [20] representations for X-Ray images.

The contribution of our work as follows:
• To best of our knowledge, it is the first approach in SPR that

utilizes speech data from entire surgical operations and com-
bination with X-Ray images.

• We analysed usage of positional encodings and previous es-
timates for integrating long term temporal information.

• We analysed class-imbalance problem with re-weighting and
modified loss functions for recognizing short duration surgi-
cal phases.

Our study is organized as follows: we explain our proposed
framework in Section 2; we report our findings in Section 3, and
we give our conclusion in Section 4.

2. Proposed Method
2.1. Intervention

Port-catheter placement is a frequently applied minimally-
invasive procedure in the radiology department. The main
purpose of this operation is to place a port under the skin of
the chest, which is connected via a catheter to the large veins
emptying into the heart. This operation prevents injuries to
small vessels after repetitive infusions during treatments such
as chemotherapy [21]. The procedure is typically performed by
a single physician and an assistant. The duration of an opera-
tion varies between half an hour to three hours depending on the
experience level of the medical personnel, complications during
the operation or the general condition of the patient.
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Figure 1: The framework of the proposed model. The orange-colored blocks represent the audio branch, blue-colored blocks represent
the visual branch and grey-colored blocks represent the temporal model. N shows the number of residual blocks.

2.2. Feature Extraction Backbone

For speech and audio signals, self-supervised approaches such
as wav2vec 2.0 [22] have been widely used. To create bet-
ter representations for languages with little available data,
the wav2vec 2.0 model extended to multi-language setting in
XLSR [19]. A large variant XLSR-53 is trained with 50k hours
of public data from 53 languages, including German which is
the language of the experiment corpus. Therefore, we chose
XLSR-53 as the backbone model for our framework. In our
study, we used the output of the final Transformer layer. The
motivation for this choice is to include maximum temporal in-
formation in the feature vectors. In the windowing step, we
used seven-seconds casual Hann window with a one-second hop
length. The seven-second long audio data of each channel is
used as the input to the feature extraction backbone.

For X-Ray images, we used Densenet121 [23] model
pre-trained on all publicly available chest X-Ray datasets.
The details of the pre-trained model and the corresponding
TorchXRayVision library are released in [20]. The pretrain-
ing setting and datasets are closely relevant to the port-catheter
placement intervention as chest X-Rays are used. To have the
same temporal resolution as the speech and audio features, we
extracted features from seven X-Ray images, which correspond
to seven seconds at a 1fps rate, and shifted a single image at
each time step. Both wav2vec 2.0 XLSR-53 and Densenet121
models held frozen during training.

2.3. Temporal Model

Modeling temporal relations is a vital component of SPR archi-
tectures. To have a large receptive field, we used a two-stage
TCN network in our temporal model. Although Transformer
networks became very popular and achieved state-of-the-art re-
sults in many applications, we chose TCN architecture in our
network due to limited available training data. We used past
estimates in an auto-regressive manner to further increase the
receptive field of the network. The effect of our design choices
are experimented in Section 3.2.

Our model runs at a rate of one second, i.e. an estima-
tion is made every second utilizing features from a window
of seven seconds as explained in the previous section. The
overview of our whole proposed framework is depicted in Fig-

ure 1. Our source code is available at: https://github.
com/kubicndmr/PoCaPNet.

3. Experiments

3.1. Dataset

In our study, we used the PoCaP Corpus containing 31 port-
catheter placement operations recorded in the Radiology De-
partment of University Hospital Erlangen, Germany [24]. In
this dataset, the physician and the medical assistant wore
Sennheiser XSW 2 ME3-E wireless headsets for the audio
recording. All conversations in the dataset are held in German.
Additionally, the internal microphone of a single GoPro Hero 8
camera, which is initially set up for easing annotation work, is
also included in the dataset as the ambient microphone channel.
All channels are aligned and then re-sampled at 16kHz. X-Ray
images are captured from the output of the X-Ray machine at
a 1fps rate. The data set is unfortunately not publicly avail-
able due to local laws for protecting the data privacy of the pa-
tients and the medical personnel. To the best of our knowledge,
any other multi-modal data set of any operation type contain-
ing full-length speech signals is not existing for repeating our
experiments. Thus, we can only provide our results with our
in-house dataset.

The recordings suffer significant data loss during the six op-
erations. Data loss happened during data recording for a variety
of causes, such as software failure, a change in operating per-
sonnel, or a recording error. Thus, we excluded these recordings
and used the remaining 25 operations for our experiments. For
the training, validation, and test set separation, we employed the
conventional 60− 20− 20 percent random split.

The dataset contains eight surgical phases and a transi-
tion phase. These are: Preparation, Puncture, Positioning of
the Guide Wire, Pouch Preparation and Catheter Placement,
Catheter Positioning, Catheter Adjustment, Catheter Control,
and Closing. Transition phases are defined at phase borders as
instant stops, breaks, talks, or behaviors that could belong to
both surgical phases and are not considered during the training
and testing. These few seconds long relaxation periods are pro-
posed to address ambiguity in phase annotations.
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3.2. Temporal Relation

Problem: For successful and robust phase recognition, long-
distance temporal information must be aggregated to the esti-
mation step at the current time frame. Even for humans, trying
to estimate a surgical phase from a short data window without a
prior knowledge would be challenging or even may not be pos-
sible in some cases. With our choice of TCN architecture, we
aimed to mitigate this problem. However, convolutional lay-
ers cannot access previous frames outside of the mini-batch,
preventing them from leveraging this crucial information. This
factor limits the receptive field of the proposed models to batch
size. Previous estimation steps can contain relevant information
for the current estimation step.
Proposed Solution: To address this problem, we designed an
experiment with three settings: (1) Two-Stage TCN. In this set-
ting, the output of the audio and visual branches are concate-
nated and used as input to the linear layer. The Two-Stage TCN
network uses this input for surgical phase recognition; (2) Po-
sitional Encodings [25]. In addition to the previous setting, we
added positional encodings to the output of the linear layer via
summation. We aimed to provide timely information to the
current estimation, thus, distinguishing similar-looking inputs
via their time order. For example, the beginning and the end
of each operation have similar audio and visual characteristics
and belong to different classes, e.g. Preparation and Closing.
We claim that it would be easier to differentiate these classes
by knowing their position within the ongoing operation; (3)
Auto-regressive delayed estimations. In this setting, we used
the phase estimations from the previous mini-batch to create an
additional memory-like feature instead of positional encodings.
We added this vector to the output of the linear layer via sum-
mation, see Figure 1. As a result, we attempted to keep track
of both position and phase order simultaneously. We claim that
using the previous estimation includes necessary time order in-
formation as positional encodings and additional phase order
information. Similar to the previous analogy, it would be easier
to classify an input at the end of the operation as Closing by
knowing that the previously estimated phase was the Catheter
Control.
Implementation Details: After our initial experiments in the
first setting with single, two, and three-stage TCN models, we
observed the best results with the two-stage model and used
this model for all experiments. The two-stage model has 2.8
million parameters. We performed our experiments using class-
weighted cross-entropy loss and Adam [26] optimizer with
weight decay 1E − 6, learning rate 9E − 6, and batch size
512. Our method was implemented in PyTorch and our models
were trained on a single NVIDIA RTX 3090 Ti 24 GB GPU.
Evaluation & Discussion: In the evaluation, we used frame-
wise accuracy and weighted F1-score. Our results are presented
in Table 1. We observed lowest accuracy in the first setting with
the vanilla two-stage TCN network. In parallel to our hypoth-
esis, we achieved significant performance improvement with
the addition of temporal connections. By using positional en-
codings, we reached approximately 8.5 points higher accuracy.
By using auto-regressive delayed connection, we achieved 3.5
points further increase in the accuracy. In F1-score results, sim-
ilar results can be seen.

3.3. Class-Imbalance

Problem: Although it is equally important from clinical per-
spective to recognize all phases robustly, the durations of sur-
gical phases of the port-catheter placement procedure and the

Table 1: Phase recognition results of three settings of the tem-
poral model: (1) Two-Stage TCN, (2) Addition of Positional En-
codings (3) Addition of past delayed estimation.

Temporal Connection Accuracy F1-Score

Two-Stage TCN 67.94± 8.67 68.62± 9.22
+ Positional Encoding 76.48± 4.92 76.15± 5.91
+ Delayed Estimation 79.99± 7.57 80.74± 6.47

corresponding data are not evenly distributed. This class-
imbalance problem possesses a challenge during both train-
ing and testing. Figure 2 shows distribution of durations via
Gaussian density estimation for each surgical phase and cumu-
lative means in the PoCaP Corpus. The phases Guide Wire
(green), Catheter Positioning (brown), and Catheter Control
(grey) have considerably shorter durations when compared to
Puncture (orange), Catheter Placement (red), and Catheter Ad-
justment (pink) phases. Thus, it is difficult to recognize these
phases.
Proposed Solution: Several strategies are proposed to mitigate
class-imbalance problem in various research topics, including
re-weighting of classes and modified loss functions. In this ex-
periment, we considered these techniques with our framework
and tested following settings: (1) Cross-entropy (CE) loss. Al-
though an intuitive decision given the strong class-imbalance
problem would be the class-weighted cross-entropy loss, we
used this setting to illustrate the effects of the re-weighting
method in the next step; (2) Class-weighted cross-entropy. In
this case, class weights are calculated as inverse frequencies;
(3) Focal loss [27]. In this setting, we aimed to give less im-
portance to well-classified phases; (4) Label-distribution-aware
margin (LDAM) loss [28]. We attempted to stimulate larger
margins for short duration phases in this setting.
Implementation Details: In all experiments in this section, we
used the two-stage TCN model with the delayed estimation con-
nection. We kept all other variables and hyperparameters except
loss functions the same as in the previous section. In the focal
loss experiment, we tested different γ values and reported the
best results with γ = 2.

00:00 00:12 00:25 00:37 00:50 01:02 01:15
Time (HH:MM)

Preparation
Puncture

GuideWire
CathPlacement

CathPositioning
CathAdjustment

CathControl
Closing

Figure 2: Cumulative mean (dashed line) and Gaussian den-
sity estimation (shaded area) of the durations for eight surgical
phases in the PoCaP Corpus.
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Figure 3: Visualization of estimated surgical phases and ground truth labels of two port-catheter placement operations.

Evaluation & Discussion: In the evaluation, we used frame-
wise accuracy, weighted F1-score, and ribbon plots. Our results
are presented in Table 2 and Figure 3. We achieved the highest
frame-wise accuracy with cross-entropy loss, however, as de-
picted in the first row of the Figure 3, this setting could only
correctly classify dominant phases Preparation (blue), Punc-
ture (orange), Catheter Placement (red), Catheter Adjustment
(pink), and Closing (yellow). This was an expected behavior
since we handled all phases equally without considering the la-
bel distribution of the dataset. Although the overall classifi-
cation rate is high, this is not a clinically desired output. In
the second setting, we used class-weighted cross-entropy and
could recognize Guide Wire (green) and Catheter Control (grey)
phases additionally. Catheter Positioning (brown) is either mis-
classified or entirely missed and Guide Wire (green) is over-
emphasized in all test data. The second row of the Figure 3
shows the results for this setting. In the third experiment, we
observed similarly over-emphasized short phases Guide Wire
(green) and Catheter Control (grey) phases and many phase
shifts with the focal loss function. In addition, we obtained the
lowest accuracy and F1-score results in this experiment. This
could be resulted from probabilities of class estimations being
not significantly different for easy and hard samples. Example
results are illustrated in the third row of Figure 3. In the fi-
nal setting, we achieved the most consistent results with LDAM
loss. In this case, we could recognize all phases except Catheter
Positioning (brown) consistently and achieved 2.5 points better
accuracy than class-weighted cross-entropy loss. Results are
shown in the fourth row of the Figure 3. We think that this
setting provides the most robust results for possible clinical ap-
plications. Catheter Positioning (brown) phase is consistently
misclassified in all experiments. We claim that this is caused by
this phase being both very difficult to distinguish from neigh-
boring phases and having a short duration. In contrast to this
phase, another short phase Catheter Control (grey) phase has a
very distinctive X-Ray setting, which makes it easier to recog-
nize, thus, it is recognized better in all experiments.

In future studies, we would like to focus on Catheter Po-
sitioning (brown) phase specifically. Moreover, we would like
to experiment with the individual effects of each microphone
channel and X-Ray input. Physicians and assistants have differ-
ent tasks during an intervention and their contributions would be
different. An ambient microphone channel typically captures all

Table 2: Phase recognition results of four settings with different
loss functions proposed for class-imbalance problem.

Loss Function Accuracy F1-Score

Cross Entropy 84.82± 6.76 82.24± 6.58
Class-Weighted CE 79.99± 7.57 80.74± 6.47
Focal 70.19± 4.90 58.35± 3.39
LDAM 82.56± 3.21 81.30± 3.89

background sounds in the OR and has a noisy input. The X-ray
channel provides very sparse but informative data. Thus, un-
derstanding the contribution of multi-modal data is a promising
research direction. Finally, we would like to test our approach
with different interventions, medical institutes and languages.

4. Conclusion
In this work, we introduce the PoCaPNet, a framework for sur-
gical phase recognition using speech and X-Ray images. Our
study is based on audio features extracted from three different
microphone channels using the wav2vec 2.0 XLSR-53 model
and visual features extracted from X-Ray images using the
TorchXRayVision model. To the best of our knowledge, we are
the first to employ speech data from the entire intervention and
X-Ray data in combination for the surgical phase recognition
task. Aggregating long-term temporal information and learning
with class-imbalanced data were the two biggest problems in
our study. We proposed using delayed estimation in an auto-
regressive manner to integrate past temporal information into
the current classification step and LDAM loss to address the
class-imbalance problem. Our experimental results show sig-
nificant performance improvement with these additions. This
study shows proof-of-concept for using speech data in an SPR
task. Our results encourage the development of many new ap-
plications such as interactive intelligent assistants in ORs.
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I. Oropesa, and E. J. Gómez, “Speech-based surgical phase recog-
nition for non-intrusive surgical skills’ assessment in educational
contexts,” Sensors, vol. 21, no. 4, p. 1330, 2021.

[17] M. Seibold, A. Hoch, M. Farshad, N. Navab, and P. Fürnstahl,
“Conditional generative data augmentation for clinical audio
datasets,” in Medical Image Computing and Computer Assisted
Intervention–MICCAI 2022: 25th International Conference, Sin-
gapore, September 18–22, 2022, Proceedings, Part VII. Springer,
2022, pp. 345–354.

[18] Y. A. Farha and J. Gall, “Ms-tcn: Multi-stage temporal convo-
lutional network for action segmentation,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recogni-
tion, 2019, pp. 3575–3584.

[19] A. Conneau, A. Baevski, R. Collobert, A. Mohamed, and M. Auli,
“Unsupervised cross-lingual representation learning for speech
recognition,” arXiv preprint arXiv:2006.13979, 2020.

[20] J. P. Cohen, J. D. Viviano, P. Bertin, P. Morrison, P. Torabian,
M. Guarrera, M. P. Lungren, A. Chaudhari, R. Brooks, M. Hashir,
and H. Bertrand, “TorchXRayVision: A library of chest
X-ray datasets and models,” in Medical Imaging with Deep
Learning, 2022. [Online]. Available: https://github.com/mlmed/
torchxrayvision

[21] S. J. Gonda and R. Li, “Principles of subcutaneous port place-
ment,” Techniques in vascular and interventional radiology,
vol. 14, no. 4, pp. 198–203, 2011.

[22] A. Baevski, Y. Zhou, A. Mohamed, and M. Auli, “wav2vec
2.0: A framework for self-supervised learning of speech repre-
sentations,” Advances in neural information processing systems,
vol. 33, pp. 12 449–12 460, 2020.

[23] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger,
“Densely connected convolutional networks,” in Proceedings of
the IEEE conference on computer vision and pattern recognition,
2017, pp. 4700–4708.

[24] K. C. Demir, M. May, A. Schmid, M. Uder, K. Breininger,
T. Weise, A. Maier, and S. H. Yang, “Pocap corpus: A multi-
modal dataset for smart operating room speech assistant using in-
terventional radiology workflow analysis,” in Text, Speech, and
Dialogue: 25th International Conference, TSD 2022, Brno, Czech
Republic, September 6–9, 2022, Proceedings. Springer, 2022,
pp. 464–475.

[25] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
Advances in neural information processing systems, vol. 30, 2017.

[26] D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” arXiv preprint arXiv:1412.6980, 2014.

[27] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss
for dense object detection,” in Proceedings of the IEEE interna-
tional conference on computer vision, 2017, pp. 2980–2988.

[28] K. Cao, C. Wei, A. Gaidon, N. Arechiga, and T. Ma, “Learning
imbalanced datasets with label-distribution-aware margin loss,”
Advances in neural information processing systems, vol. 32, 2019.

2352


