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Abstract
In this work, we introduce a diffusion-based text-to-speech (TTS)
system for accent modelling. TTS systems have become a natural
part of our surroundings. Nevertheless, because of the complex-
ity of accent modelling, recent state-of-the-art solutions mainly
focus on the most common variants of each language. In this
work, we propose to address this issue with a newly proposed
diffusion generative model (DDGM). We first show how we can
adapt DDGMs to the problem of accent modelling. We evaluate
and compare this approach with a recent state-of-the-art solu-
tion, showing its superiority in modelling six different English
accents. On top of our TTS system, we introduce a novel accent
conversion method, where using the saliency map technique, we
remove source accent-related features and replace them with the
target ones through the diffusion process. We show that with this
approach, we can perform accent conversion without a need for
any additional speech information such as phonemes or text.
Index Terms: text-to-speech, accent modelling, diffusion gener-
ative models

1. Introduction
Text-to-speech (TTS) synthesis is a technology that allows com-
puters to convert written text into spoken language. While the
majority of recent systems focus on the most common versions
of languages, such as American or British English, one of the
key aspects that makes the usage of a synthesized voice more
comfortable is the ability of the system to accurately capture the
nuances of language such as accents and dialects.

Nevertheless, modelling accented speech with neural models
remains a challenging problem, as they involve variations not
only in pronunciation but also in rhythm and intonation. Hence,
different state-of-the-art TTS systems rely on generative neural
models that can create synthetic speech with different characteris-
tics. Recent advances in this domain have led to the development
of sophisticated models that can capture complex data distri-
butions. Diffusion models [1], in particular, have shown to be
effective in generating high-quality samples in variety of tasks,
including the generation of images [2, 3, 4], text [5], and speech
synthesis [6]. Inspired by those applications, in this work, we
propose to adapt the diffusion-based generative model to handle
complex accent data and generate high-quality accented speech.

In brief our contributions are as follows: 1) we introduce
a new model for multi-speaker multi-accent speech synthesis
based on the recently proposed GradTTS [6]; 2) we show that
our method outperforms recent state-of-the-art solutions; 3) we
propose a method for direct end-to-end accent conversion that
does not need speech features such as phonemes or text.

*Work done while at Amazon.
Link to the generated samples: Amazon Science

2. Related Works
2.1. Accent modelling

Most speech systems that focus on accent modelling use accent
conversion (AC) to transform a recorded voice into a different
accent. This can be achieved in two ways. By combining spec-
tral features via voice morphing [7, 8, 9] or through spectral
and phoneme frame matching [10, 11, 12]. On top of those
two approaches, there exists a line of work that relies on ex-
ternal features with frame-matching preceded by voice conver-
sion [13, 14, 15, 16, 17, 18]. Several works focus on foreign
accent conversion. In [19], authors propose to first to extract a
phonetic posteriorgram of a non-native speaker and decode it
with an acoustic model trained on the corpora of native speakers.
The work is later extended in [20] with additional speaker and
accent embedding models.

2.2. Diffusion models for speech synthesis

There are several methods that employ diffusion models for
speech synthesis. In GradTTS [6] authors propose the adaptation
of FlowTTS [21] method with diffusion decoder. In Guided-
TTS [22, 23] authors combine this setup with classifier guid-
ance [2] where diffusion model trained in unsupervised way is
guided towards desired phonemes through external phoneme
classifier. There are several works where diffusion models are
employed to model multiple speakers [24, 25], or as a neural
vocoder [26].

2.3. Data conversion with diffusion models

Outside of the speech domain diffusion models have been used
for conversion tasks in image domain to alter the original data
samples [27], change their domain [28], create counterfactual
examples [29] or inpaint the missing parts [30]. In this work, we
extend those studies to the problem of accented speech synthesis
and accent conversion.

3. Background
3.1. Score-based generative models

In this work, we consider a unified method for denoising diffu-
sion probabilistic models (DDPM) [1, 31] introduced in [32]
with extension to score matching with Langevin dynamics
(SMLD) by [33]. This approach is applied to text-to-speech
(TTS) in the Grad-TTS [6] model, where Popov et al. describe
the use of a diffusion process to convert any speech data distri-
bution to the standard normal distribution:

dXt = −1

2
Xtβtdt+

√
βtdWt, t ∈ [0, T ], (1)
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where βt is the pre-defined noise schedule βt = β0 + (βT −
β0)t and Wt is the Wiener process. Eq. 1 defines the forward
diffusion process where original data sample X0 is transformed
into random noise XT . To generate new samples a backward
diffusion process is defined that reverses the forward one with
trainable neural model. Following [32], Popov et al. use a single
denoising model sθ to predict the score function s(Xt) defined
as ∇Xt log pt(Xt) [6]. Model sθ is trained with a loss function:

L(θ) = Et,X0,ϵt

[∥∥sθ(Xt, t) + λ(t)−1ϵt
∥∥2

2

]
, (2)

where λ(t) = I − e−
∫ t
0 βsds. New sample X0 can be generated

from random gaussian noise Xt through discretised version of
the reverse stochastic differential equation:

Xt− 1
N

= Xt +
βt

N
(
1

2
Xt + s(Xt)) +

√
βt

N
zt, (3)

s(Xt) = ∇Xt log pt(Xt), (4)

where N is the number of steps in the discretized reverse process,
zt is the standard Gaussian noise and 1

N
defines the size of one

step (for T = 1).

3.2. Saliency maps

Saliency maps are used to find important information in the input
from the perspective of a trained neural network. Different works
use this technique to quantify and understand why machine
learning models make certain decisions [34, 35, 36, 37, 38]. The
general idea behind saliency maps is that the important area in the
image for a given class should highly activate the convolutional
features, while at the same time highly influencing the decision.

In particular, given an input X and a trained classifier q
that predicts class y for this input, we can calculate the saliency
map m using an internal layer of a classifier l. To that end, we
first find the regions of the image that activate the convolutional
filters, by calculating the activation values Fl at a given layer l.
Those activations are then combined with a gradient δl that is
backpropagated to the layer l after calculating loss wrt. target
class y.

m(X, y) = δlL(q(X), y) · Fl(X) (5)

The resulting saliency map m(X, y) has the dimensionality
of the layer l. If there is a pooling used for the calculation of
the activations Fl, we have to upsample the resulting mask so
that it reflects the shape of the input. The final map defines the
importance of each input pixel from the classifier perspective.
High saliency score, depict what the neural network believes
is important to make a certain prediction. For example, if the
neural network is an image classifier and the task is to predict
the dog class, the saliency will reflect which areas of the input
image are important to yield dog as the final prediction.

4. Method
In this work we propose a novel system for accent modelling with
diffusion models. We first introduce a text-to-speech approach,
followed by the implicit accent conversion method.

4.1. Text-to-speech with accent modelling

Our accented text-to-speech generation model is comprised of
two parts - a text encoder module that learns the conditional
average prediction for an utterance [6, 39] and a diffusion pro-
cesses that refines this prediction into a final mel-spectrogram.
An overview of our method is presented in Figure 1.
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Figure 1: Overview of our TTS model with two versions of accent
conditioning (a) speaker and accent conditioning as third input
channel, (b) speaker and accent conditioning as scaling of the
latent UNet representations.

4.1.1. Text encoder

In TTS systems, the input in the form of phonemes consists of
L values x1:L. The goal of the encoder is to roughly approxi-
mate the target mel-spectrogram y1:F where F is the number of
acoustic frames. In our text-to-speech model, we follow the for-
mulation from [6, 21] and train the encoder network to convert
an input text sequence x1:L into a sequence of features µ̂1:L. The
feature sequence is then aligned to a target frame-wise features
µ1:F using durations predicted by a submodule of the encoder.
The encoder is trained to minimize the distance between the pre-
dicted aligned output µ and the original mel-spectrogram y. We
use a loss function that employs Monotonic Alignment Search
and Mean Square Error in a logarithmic domain for duration
prediction.

Since accent influences the duration of individual
phonemes [40, 41, 42], we postulate to include the accent and
speaker information already in the encoder, changing µ =
Eφ(x1:L) to µ = Eφ(x1:L, spkemb, accemb), where φ are the
parameters of the encoder E.

4.1.2. Diffusion decoder

With accented speech encoded into aligned features µ =
Eφ(x1:L, spkemb, accemb), we use a diffusion-based genera-
tive model to refine the final mel-spectrogram [6]. To that end,
we create a forward diffusion process (Equation 1), that takes
original data samples and gradually noise them towards random
Gaussian noise. However, to take into account the encoded
features, as a terminal distribution, we use the Gaussian noise
N(µ, I), where µ are aligned features from the text encoder.

For the training of the diffusion decoder, we use the loss
function based on the score function as presented in Equation 2.
For a diffusion model, a single denoising model sθ is trained
with a set of parameters θ to perform denoising at each diffusion
timestep. To simplify the training, a timestep encoding t is
used to condition the output of the decoder. Additionally, [6]
propose to condition the diffusion model with the unchanged
output of the text encoder, µ. In particular, for the UNet [43]
architecture most commonly used as a diffusion denoiser, the
timestep embeddings are used to scale the latent activations
outputted by the UNet encoder, while additional conditioning
with µ is added as a second channel to the input mel-spectrogram
as presented in Figure 1.

In this work, we additionally propose to condition the de-
noising decoder model on speaker and accent embeddings. We
evaluate two approaches where embeddings similarly to µ are
added as a third input channel (input conditioning) or combined
with the timestep embeddings t are used to scale the latent ac-
tivations (latent conditioning). In the first approach, the UNet
encoder encodes the mel-spectrogram while being aware of the
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Figure 2: Overview of our accent conversion model.

target accent and speaker, while in the second approach, this
information is provided only to the decoder.

4.2. Accent conversion

On top of the text-to-speech synthesis model with accent and
speaker modelling, we introduce a diffusion-based end-to-end
accent conversion method that does not require any external
speech features such as text or phonemes. In particular, we
propose a two-step approach where in the first step, we use
saliency maps extracted from externally trained classifier to
remove accent-related features from the original input. Then,
we propose to recreate removed features replacing them with
a target accent with a diffusion decoder. The overview of this
method is presented in Figure 2.

4.2.1. Accent features removal with saliency maps

In order to remove accent-related features from a mel-
spectrogram, we propose a novel method based on the saliency
map technique that allows to identify regions of interest that
highly influence the decision of the classifier. To that end, we
first prepare a convolutional classifier that we train directly on
mel-spectrograms to distinguish between all available accents.
Then, before converting a mel-spectrogram from one accent to
another, we follow the method described in section 3.2 and cal-
culate saliency values for each mel-spectrogram with respect
to the source accent. We then take the first quantile and mask
that information out. In other words, we take the top 25% most
important regions according to the classifier and replace them
with silence. In the baseline scenario, we remove features by
replacing them with zero values. However, from experiments,
we learnt that this approach might lead to confusion between
removed features and silence regions. Therefore, we also experi-
mented with other approaches, such as replacing accent features
with mean or random values.

4.2.2. Accent conversion

With source accent features removed from the source mel-
spectrogram, we propose to train a diffusion model to convert
examples from one accent to another. We once more refer to
the procedure described in Section 3. This time, however, we
implicitly create a forward diffusion process between the same
utterances but different accents. In particular, we train the model
with pairs of parallel examples Xi and Xj , with the same utter-
ance but two different accents i and j.

For i as a source accent and j as a target one, we first remove
the accent features from the source mel-spectrogram X̂i = Xi×
mb, where mb is a binary mask calculated as mb = m(Xi, i) >

λ with saliency map for input X wrt. accent i and threshold λ.
Then, we create a forward diffusion process following equation
Eq. 1 between X̂i and gaussian noise N(Xj , I) as a terminal
distribution. This approach is similar to the one proposed in [6],
where terminal distribution is shifted from Normal distribution
by the output of the text encoder. In our case, however, we shift
it towards an altered source mel-spectrogram.

The final accent conversion method consists of two parts.
First, we take the input mel-spectrogram Xi with source accent
i, we remove the source accent features with a saliency map tech-
nique using a trained accent classifier X̂i = Xi×m(Xi, i) > λ.
Second, we sample the random noise to the preprocessed mel-
spectrogram xi

T ∼ N(X̂i, I), which we process with a diffusion
decoder while conditioning it on the target accent j. We addi-
tionally condition the model on the original preprocessed source
mel-spectrogram X̂i[6]. Our experiments show that while ac-
cent is converted, the source mel-spectrogram conditioning is
necessary since the model levereges it as a vague representation
of phonemes.

5. Dataset
We follow the experiments schema introduced in [42], where
authors model accents with the Flow model. Therefore, we use
the same training data with 3173 speakers distributed across
six different English accents: American, Australian, British,
Canadian, Indian, and Welsh. The dataset ranges in terms of
sound quality and number of utterances per speaker (from 100
to 20k) and per accent (from 18k to 300k).

For the training of the accent conversion method, we create
an artificial dataset of parallel examples by generating them with
our TTS model. To that end, we randomly select 10000 train
samples from each accent that we synthesize with the original
speaker embeddings and all six target accents. This gives us a
training dataset of 10000 tuples of 6 utterances with the same
input text but different accented speech.

6. Experiments
In our experiments we validate both of our approaches on all of
the available accents comparing it to state-of-the-art approach.
We first evaluate our text-to-speech method, followed by exper-
iments on accent conversion. Finally, we offer brief ablation
study of our accent conversion using different saliency masks.
Synthesised samples are available on our website1.

6.1. Experimental details

For all of our experiments we use input phonemes processed by
a single front-end designed for British English. We train accent
embeddings jointly with the encoder and the decoder, while for
speaker embeddings we use externally trained GE2E [45] model.
For saliency extraction, we use the convolutional classifier that
achieves average accuracy of 73% distinguishing between the six
different accents. We use perceptual evaluation with a MUltiple
Stimuli with Hidden Reference and Anchor (MUSHRA) tests.
Each test was performed with 100 samples evaluated by at least
24 native listeners from each locale. The listeners rated the audio
clips between 0 and 100 on three axis the quality of generated
speech, the quality of the accent and the speaker similarity. For
that end we ask evaluators from six different locales to answer

1Anonymized due to the double-blind policy. Please check the html
file attached in the supplementary material.
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Naturalness Accent Similarity Speaker Similarity
Locale US CA GB AU IN WLS US CA GB AU IN WLS US CA GB AU IN WLS
Lower anchor - - - - - - 65.84 36.34 44.61 30.81 31.61 38.73 56.95 34.86 43.02 31.26 43.14 37.73
Upper anchor 63.82 69.74 63.35 72.48 59.88 63.40 66.98 65.94 65.09 63.55 57.20 62.31 67.06 72.47 61.28 68.75 62.61 61.20
Flow-TTS AC [42] 63.06 60.24 57.11 65.78 57.59 59.40 70.06 66.87 51.88 66.88 56.78 59.18 65.90 48.70 54.13 50.19 51.20 54.38
Flow-TTS VC [44] 63.90 58.71 56.50 66.87 56.91 59.00 69.43 67.14 51.42 66.38 57.08 59.33 66.34 48.78 55.81 50.53 52.10 53.52
Ours (input conditioning) 64.08 60.61 56.19 68.97 59.66 59.13 69.81 64.94 66.71 64.40 60.04 58.62 64.81 49.74 62.49 50.61 46.89 51.79
Ours (latent conditioning) 64.60 61.35 57.37 68.52 61.09 60.32 70.58 66.86 66.31 65.85 62.66 59.72 65.32 48.53 64.69 51.32 46.69 52.80

Table 1: Results of the MUSHRA evaluation of our proposed TTS approach when compared to recent state-of-the-art in terms of
naturalness, accent, and speaker similarity. Our approach significantly outperforms SOTA in majority of cases especially in accent
quality where it reaches the quality of upper anchor.

three questions:
• Please rate the audio samples in terms of their naturalness.
• Please rate how well this audio sample resemble X (e.g. Indian

/ British / American / Australian / Welsh) accent?
• Please listen to the speaker in the reference sample first. Then

rate how similar the speakers in each system sound compared
to the reference speaker.

As part of MUSHRA evaluation, the reference and the hid-
den upper anchor were recordings of the corresponding locale,
while the lower anchor was a recording from a different locale or
speaker. We performed a paired t-test with Holm-Bonferroni cor-
rection (p ≤ 0.05) to ensure results are statistically significant
(marked in bold).

6.2. Text-to-speech approach

In Table 1, we show the full comparison of our method with two
Flow-TTS-based baselines [42, 44] in all 6 different locales. We
present MUSHRA scores averaged over 100 listeners. In order
to spot cheating listeners, we added to the evaluation artificial
samples containing white noise. Listeners that provided high
scores for those samples were fully excluded from the score. In
all of the evaluations our method performs similarly or better
than Flow-TTS, while for 5 evaluations the difference between
those two approaches is statistically significant. The highest gain
in terms of performance is observed for accent quality, where for
several locales (US, IN, CA) our approach reaches the quality
of upper anchor (randomly selected native speaker from a given
locale). The proposed method performs similarly to the baselines
on speaker similarity evaluations. We can observe that latent
conditioning performs better than the input one.

6.3. Accent conversion

Next, we evaluated the performance of our method applied to the
task of accent conversion. This is much harder task, since by defi-
nition we do not have access to the phonemes at hand. We forced
the model to convert from a source accent to a target accent in
the backward and forward diffusion respectively. By applying
saliency to the important regions of the mel-spectrogram we
were able to convert the accent. Figure 3 presents the results of
both using the text encoder and not using phonemes at all - both
with and without masked saliency. While the big degradation
without using phonemes is expected we see that masking using
saliency significantly improves the results.

6.4. Ablation studies

For ablation studies, we run an experiment to validate the per-
formance of accent removal with saliency maps. For that end,
randomly select 100 training examples data in all 6 locales. Then,
we follow procedure described in Section 4.2.2 to remove their
original accent, replacing features described by saliency map
as the most important ones with silence. With this alteration in

Text encoder Upper Anchor Lower Anchor Uniform Saliency No Saliency
System

0

20

40

60

80

100

Sc
or

e

Figure 3: Comparison of our accent conversion method for
accent similarity.

Accent GB US CA AU IN WLS
Original 48% 34% 23% 25% 30% 21%

Removed
accent 43% 28% 21% 18% 26% 18%

Table 2: Accuracy of naive listeners asked to classify the accent
of samples with accent features removed through our saliency-
based approach.

place, we ask evaluators from all 6 locales to guess what was the
original accent of the sample. As presented in 2 where we report
the accuracy of human evaluators, we observe that they are easily
confused and score very low in guessing the right accent.

7. Discussion & Inclusiveness
In this work, we introduce a method that models accented speech
in a problem of speech synthesis. In our opinion it is an important
goal, to expand the recent TTS system beyond the most common
and most represented locales. The ability of TTS systems to
recognise and synthesise linguistic nuances such as accents and
dialects not only promotes inclusion and understanding, but
also helps to preserve linguistic diversity. This is particularly
important in an increasingly globalised world where the use of
technology has the potential to homogenise linguistic expression
and undermine linguistic diversity.

Although, our method presented in this work is limited to
different variants of English, we believe that it can be easily
adapted to numerous accents and dialects in different languages.

8. Conclusions
In this work, we propose a novel method for accented speech
modelling based on diffusion generative models. We first pro-
pose an accented TTS system and show that our approach out-
performs recent state-of-the-art, achieving upper bound perfor-
mance in accent modelling for several locales. On top of this
approach we introduce a method for accent conversion, where
we remove source accent features using the saliency maps, in
order to replace them with a target features using a diffusion
model without the need to explicitly condition on phonemes.
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