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Abstract
Dialect classification is used in a variety of applications, such
as machine translation and speech recognition, to improve the
overall performance of the system. In a real-world scenario, a
deployed dialect classification model can encounter anomalous
inputs that differ from the training data distribution, also called
out-of-distribution (OOD) samples. Those OOD samples can
lead to unexpected outputs, as dialects of those samples are un-
seen during model training. Out-of-distribution detection is a
new research area that has received little attention in the context
of dialect classification. Towards this, we proposed a simple
yet effective unsupervised Mahalanobis distance feature-based
method to detect out-of-distribution samples. We utilize the la-
tent embeddings from all intermediate layers of a wav2vec 2.0
transformer-based dialect classifier model for multi-task learn-
ing. Our proposed approach outperforms other state-of-the-art
OOD detection methods significantly.
Index Terms: Out of Distribution Detection, Open Set Classifi-
cation, Outlier Detection , Dialect Identification, Wav2vec 2.0,
Automatic Speech Recognition

1. Introduction
Dialect identification [1] has received a lot of interest in the
speech processing community in recent decades. Dialect iden-
tification plays an important role in speech processing systems
such as automated speech recognition (ASR) [2], multilingual
translation systems, targeted advertising, and biometric authen-
tication since it helps to target certain dialects. In recent years,
numerous approaches [3, 4] have been proposed with great suc-
cess, for dialect identification. However, almost all of these lat-
est state-of-the-art approaches only address closed-set dialect
identification, where the set of dialects to predict is fixed. For
every input speech data, the predicted dialect within that set
is returned. But in a real-life scenario, deployed applications
rarely receive regulated inputs from known dialects and are vul-
nerable to an ever-changing set of unlabeled user inputs with
unknown dialects. To solve this issue, a system should have
the option to ’reject’ that prediction and identify when the in-
put speech does not match any known dialects well. It can
also be used to identify and learn new dialects for the system.
This task is defined as out-of-distribution(OOD) detection for
dialect identification and is essential to the design of trustwor-
thy AI applications in real-world use cases [5]. The out-of-
distribution (OOD) detection problem, in general, has received
a great deal of attention in the literature, with cutting-edge algo-
rithms [6, 7, 8] being supervised in the sense that they require
fine-tuning on OOD data to accomplish high performance in
OOD detection. Nevertheless, supervised OOD detection al-
gorithms have the problem of requiring expensive training on

OOD data, curating the OOD dataset with diverse samples to
make it more distinguishable from the in-distribution data, and
additional model hyperparameter tuning.

In this paper, we present a joint framework for both dialect
classification that automatically classifies known dialects from
input speech and out-of-distribution detection which also de-
tects input audio that does not belong to any of the dialects
used to train the model. We used a pre-trained wav2vec 2.0
model and fine-tuned it on the known dialects to adapt the fea-
ture embedding. This model is used for dialect identification
tasks for input data with known dialects. Further, we retrieved
features from several intermediate transformer layers to capture
rich micro and macro phonetic feature information that may
outperform the last layer of the fine-tuned transformer model.
Later, we used those latent representations to estimate the mean,
and covariance matrix for each layer by using close-set train-
ing data only. During inference, we used previously calculated
layer-wise mean and covariance matrices to compute the Ma-
halanobis distance score for each layer, which was then used as
a feature vector. This allows us to use classical outlier rejec-
tion methods like KNN [9] to enumerate outlier scores for the
OOD detection task. We have evaluated our proposed method
by comparing it with state-of-the-art out-of-distribution detec-
tion methods [10, 11, 12, 6, 13, 14]. Our contributions can be
summarized as follows:

• We present the first joint dialect identification framework
with unsupervised OOD dialect detection, which is a plug-
and-play technique to identify known dialects or reject input
speech samples of unknown dialects in a single forward pass.

• We propose Mahalanobis’s distance-based feature to be used
by a KNN-based [9] outlier classification model for the
OOD dialect identification task. This can be used with-
out modifying the backbone architecture, unlike previous ap-
proaches [12, 13] that required us to modify the model archi-
tecture.

• We evaluated the performance of our solution on two differ-
ent language datasets i.e. English and Spanish to see how
well it rejects unknown classes while maintaining its perfor-
mance on close-set dialect classification.

The proposed approach outperforms the state-of-the-art method
and achieves an overall AUROC of 96% for the English Dialect
Dataset and 80% AUROC for the Spanish Dialect Dataset.

2. Related Work
There has been existing research work on speech dialect identi-
fication, but no prior work on out-of-distribution dialect detec-
tion. Torres et al. [1] had done earlier work on dialect identifica-
tion where they used the Gaussian mixture model (GMM) with

INTERSPEECH 2023
20-24 August 2023, Dublin, Ireland

1978 10.21437/Interspeech.2023-1974



shifted delta cepstral features (SDC). Zhang et al. [3] proposed
an unsupervised bottleneck feature extraction approach for pho-
netic label estimation. They also used an alternate autoen-
coder and an adversarial autoencoder in the alternative phase
of the speech feature extraction process. Kong et al. [4] pro-
poses a new model architecture that consists of dynamic ker-
nel convolution, local multi-scale learning, and global multi-
scale pooling layers. These proposed custom layers are used
to capture features in both short-term and long-term contexts,
multiscale granular features from wide receptive fields, and ag-
gregated features from different bottleneck layers, respectively.
Hamalainen et al. [15] worked on a Finnish dialect identifica-
tion system that used speech recording and transcription data.
Similarly, Imaizumi et al. [16], Ma et al. [17] and Lin et al. [18]
also worked on Japanese, Chinese and Arabic dialects identifi-
cation techniques, respectively.

Recently, there have been several studies that have explored
the out-of-distribution problem in various domains like vision,
text, etc. Liang et al. [10] have shown that thresholding onto
the softmax output of the predicted class provides a good proxy
score for detecting Out of Distribution (OOD) data. Shu et
al. [11] suggested another approach called DOC (Deep Open
Classification). In contrast to conventional classifiers, DOC
constructs a multi-class classifier with a 1-vs-rest final layer of
sigmoids instead of a softmax to minimize the risk associated
with open spaces. By reducing the decision bounds of sigmoid
functions with Gaussian fitting, it significantly lowers the open
space risk for rejection. Bendale et al. [12] then presented a
new neural network layer, OpenMax, which estimates the likeli-
hood that an input belongs to an unknown class. They estimate
the unknown class rejection probability value by adapting the
extreme-value Meta-Recognition-inspired distance normaliza-
tion process to the activation patterns in the penultimate layer of
the network. Lee et al. [6] proposed building a Gaussian model
from features extracted from the hidden layer and calculating
the distance from this multivariate distribution (Mahalanobis
Distance) and used this distance for OOD detection. Ren et
al. [14] modified the Mahalanobis distance by subtracting the
distance calculated from the entire training distribution to make
it suitable for detecting near OOD samples. Liu et al. [13] has
developed a robust uncertainty-based methodology that deliv-
ers an uncertainty score to each prediction and may be used
to discover outliers. Here, we compared recent state-of-the-art
machine learning and deep learning-based OOD detection tech-
niques, as stated above, in an audio dialect setting.

3. Problem Statement
The problem is formulated as a variant of conventional multi-
class classification which is also referred to as a close-set clas-
sification problem. Given dialect classification training data
Dtrain = {(x1, y1), (x2, y2) . . . (xN , yN )} where N is the to-
tal number of samples in training data, xi is the input audio
sample, yi ∈ Lknw = {1, . . . ,M} is corresponding target
dialect label with M number of dialect classes, contains sam-
ples from a fixed set of known dialect classes. During infer-
ence, the test set contains samples from both the set of known
dialect classes during training and additional unknown dialect
classes, i.e., Dtest = {(x′

1, y
′
1), (x

′
2, y

′
2) . . . (x

′
n, y

′
n)} where

y′
i ∈ (Lknw∪Lunk) and Lunk includes classes that are not ob-

served during training.
In this paper, we use a more realistic scenario in which

we have no prior knowledge of what out-of-distribution in-
puts look like. It is not possible to train a separate supervised

classifier directly in this scenario. So, our task is to train a
classifier FD(x) with Dtrain training data, that correctly pre-
dicts the dialect class from a set of known dialect classes, i.e.
FD(x) = [d1, d2, . . . , dM ] where dm is prediction score of
m-th known dialect class and accurately detects audio samples
with unknown dialect class by classifying those audio samples
as a rejected class, which is denoted as the M + 1 class.

ŷp =

{
argmaxm FD(x) if GD(x) ≤ δ

M + 1 if GD(x) > δ
(1)

Here, ŷp is the predicted class and GD(x) is a class rejection
score function that determines if the input corresponds to the un-
known dialect class or rejected class and δ is a threshold value.
Here, the OOD dialect detection problem is as simple as con-
structing a class rejection score function, GD(x) that assigns
lower scores to inputs with known dialect class than to out-of-
distribution inputs.

4. Methodology

4.1. Model Architecture and Fine-Tuning

Wav2Vec 2.0 speech model [19] is pre-trained on unlabeled
speech data using self-supervised learning for learning high-
quality representations of speech. It shows promising results
when transferred to other tasks [20, 21] like speech classi-
fication, speech recognition, speech frame classification, etc.
Therefore, we have used a pre-trained wav2vec 2.0 model and
have fine-tuned it on the Dtrain dataset for closed set known
dialect classification on M classes for learning the feature em-
beddings on the dataset. After fine-tuning, we obtain a wav2vec
2.0 architecture-based dialect identification model, FD with K
transformer layers.

4.2. Class Rejection Score Estimation Method

We denote F k
D(x) ∈ Rd as the d-dimensional feature embed-

dings corresponding to the k-th transformer layer for input x
where k ∈ [1, 2, . . . ,K]. we further passed those intermedi-
ate feature embeddings through a hyperbolic tangent function,
tanh(.) to transform the features into the same restricted se-
mantic space, i.e., ht

k(x) = tanh(F k
D(x)). We used this func-

tion to limit the value of each embedding vector element to be-
tween +1 and -1, similar to feature value scaling. From a pre-
vious study [22], different transformer layers of the wav2vec
2.0 model capture distinct semantic properties from the input
speech. Thus, we use latent representations from all transformer
layers of fine-tuned wav2vec 2.0 dialect classifier model by con-
catenating feature embeddings from all transformer layers, i.e.,
ϕh(x) = [ht

1, h
t
2, . . . , h

t
K ]T ∈ Rd.K . From previous work [6],

we use Mahalanobis distance to calculate the distance between
test audio samples and training data distribution, Dtrain for de-
tecting unknown classes. Here, we defined the Mahalanobis
distance score by using a simple and computationally efficient
approximation method in a prior work [23]. We achieved that by
decomposing the feature space into several subspaces and solv-
ing a low-dimensional constrained convex optimization. We il-
lustrate this estimation process in Figure 1. Thus, we define
Mahalanobis distance score, V k

MD(xi) in the following equa-
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tion.

V k
MD(xi) =

(
ht
k(xi))− µk

)T
Σ−1

k

(
ht
k(xi))− µk

)

µk =
1

n

n∑

i=1

[
ht
k(xi))

]

Σk =
1

(n− 1)wk

n∑

i=1

(
ht
k(xi)− µk

) (
ht
k(xi)− µk

)T

where µk,Σk are mean and covariance for k-th transformer
layer from the feature embeddings of training data, Dtrain

respectively, wk is a layer-dependent constant from that opti-
mization process for k-th transformer layer and the square root
of V k

MD(xi) is the Mahalanobis distance of the transformer
layer embedding of data xi from the k-th layer. We enumer-
ate the value of wk during that optimization process to extract
relevant hidden state features from transformer layer embed-
dings. we further define Mahalanobis distance feature vector,
VMD(x) = [V 1

MD(x) ⊕ V 2
MD(x) ⊕ · · · ⊕ V K

MD(x)] by con-
catenating Mahalanobis distance scores, V k

MD(x) for all trans-
former layers. Then, we train a KNN [9] based outlier de-
tection model with Mahalanobis distance feature vectors ex-
tracted from training samples to estimate Class Rejection Score,
GD(x) for detection of unknown class with a threshold value,
δ. We illustrate the Inference pipeline of the proposed method
in Figure 2.
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Figure 1: Illustration of Layer Feature Embedding Mean(µk),
Covariance Matrix (Σk) Estimation for k-th transformer layer
from the feature embeddings,F k

D(x) of training data, Dtrain.
Here, Avg is component-wise vector average operation and
MLCE is Maximum Likelihood Covariance Estimator.

5. Experimentation and Results
We implemented our dialect classifier model using PyTorch on
top of the Wav2Vec 2.0 model from Hugging Face transformer
library 1. We have used two different pre-trained wav2vec 2.0
model 23 for English and Spanish dialect datasets. Furthermore,
we have used all 12 transformer layers of our Wav2Vec 2.0 base
model for defining the Mahalanobis distance score in all of our
experiments. For class rejection score estimation, we have used
PyOD 4 package to implement KNN [9] with 0.01 outlier frac-
tion value and scikit-learn 5 for implementing Maximum likeli-
hood covariance estimator(MLCE). We train each dialect classi-
fication model with 6 epochs using 1 NVIDIA GTX 1080 GPU
(12 GB) with 16 GB RAM. For both training and validation, all

1https://huggingface.co
2https://huggingface.co/facebook/wav2vec2-base
3https://huggingface.co/facebook/wav2vec2-base-10k-voxpopuli-

ft-es
4https://pyod.readthedocs.io/en/latest/
5https://scikit-learn.org/
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Figure 2: OpenSet wav2vec 2.0 Dialect Classifier Architecture.
Here, ⊕ is concatenation operator and VMD(x) = [V 1

MD(x)⊕
V 2
MD(x) ⊕ · · · ⊕ V K

MD(x)], is Mahalanobis Distance Feature
Vector.

experiments use only close-set training data with fixed known
classes.

5.1. Dataset Details

We have used two custom-made datasets, English Dialect
Dataset, and Spanish Dialect Dataset for the two most spo-
ken languages, English and Spanish respectively to evaluate our
method. We have sampled speech data from AccentDB [24], UK
and Ireland English Dialect speech dataset [25] and Google
Nigerian English speech dataset6 for custom English Dialect
Dataset. We have used whole Latin American Spanish speech
dataset [26] for our custom Spanish Dialect Dataset. During
training, we hide a few classes and used those hidden classes
as unknown classes in the test set for efficacious open-world
evaluation. The details on these custom speech datasets are fol-
lowing.

English Dialect Dataset consists of 11383 audio sam-
ples (spoken by 80 speakers) with 4 classes which are ‘South-
ern’, ‘Northern’, ‘Welsh’, and ‘Scottish’, used as fixed known
classes, and 4800 audio samples (spoken by 12 speakers) with
4 classes which are ‘Indian’, ‘American’, ‘Nigerian’, and ‘Aus-
tralian’ used as unknown class samples in the test set for OOD
dialect detection evaluation. Close-set data is a subset of UK
and Ireland English Dialect speech dataset and outlier or out-
of-distribution samples are from both AccentDB and Google
Nigerian English speech dataset. More details on the respec-
tive train, validation, and test set are provided in Table 1.

Spanish Dialect Dataset consists of 17724 audio samples
spoken by 79 speakers with known 4 classes: ‘Argentinian’,
‘Peruvian’, ‘Colombian’, and ‘Chilean’, used as fixed known
classes, and 3674 audio samples (spoken by 23 speakers) with
2 classes which are ‘Venezuelan’ and ‘Puerto rico’, which are
used as unknown class test samples in the test set for OOD di-
alect detection evaluation. More details on the respective train,
validation, and test set are provided in Table 1.

5.2. Evaluation Metric

Known dialect classification performance is measured using
precision, recall, and F1 scores. For the detection of OOD di-
alects or unknown dialects, we are using the evaluation met-
rics that have been previously used in [27, 10, 6] because this
can be considered as an out-of-distribution detection. Specif-
ically, TP, TN, FP, FN, TPR, and FPR represent true positive,
true negative, false positive, false negative, true positive rate,

6https://openslr.org/70/
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Table 1: Details of Speech Dialect Classification Datasets for
Out of Distribution Detection.

Dialect
Dataset

Dataset
Split

No of
Samples

Time Duration
(in Hours)

English

Train-set 9738 17.194
Validation-set 550 1

Test-set (known dialects) 5895 2.004
Test-set (unknown dialects) 4800 5.5433

Spanish

Train-set 13715 21.29
Validation-set 2010 3.233

Test-set (known dialects) 5973 3.213
Test-set (unknown dialects) 3974 5.817

and false positive rate respectively. We use the following met-
rics for OOD dialect detection evaluation:

AUROC (Higher is better) is the area under the Receiver
Operating Characteristic (RoC) Curve. The RoC is plotted TPR
against FPR by varying the threshold.

AUPR (Higher is better) is the area under the curve plot-
ted precision against the recall by varying the threshold value.
AUPR(IN) and AUPR(OUT) represent the fixed known classes
and the outlier unknown classes as positive classes respectively.

EER (Lower is better) is the error rate of the classifier
when the confidence threshold is set where the FPR (FPR =
FP/(FP+TN)) is equal to FNR (FNR = FN/(FN+TP)).

EER =
FP + FN

TP+ TN+ FN+ FP
(2)

5.3. Close-set Performance Results

Table 2 shows the performance of the proposed model on known
dialect categorization tasks for both datasets. These results
show that the proposed method does not compromise the ac-
curacy of the model in dialect classification tasks for known
dialect classes.

Table 2: Close-set Dialect Classification Performance Results

Dataset Recall Precision F1
English Dialect 90.1 89.7 89.23
Spanish Dialect 97.77 97.51 97.57

5.4. Ablation Study

Here, we experiment with different outlier detection models to
show the effectiveness of our proposed model for class rejection
score estimation. For this study, we have used Mahalanobis dis-
tance features to train CBLOF (cluster-based local outlier fac-
tor) [28], Isolation Forest [29], KNN [9], local outlier factor
[30], and one-class SVM [31] models with the same setup as
our own model for OOD task. Table 3 and Table 4 show that our
proposed method delivers the best outcomes in both datasets.

Table 3: Ablation study results of English Dialect Dataset

Methods EER AUROC AUPR
(IN)

AUPR
(OUT)

CBLOF [28] 0.1625 92.12 76.09 9778
Isolation

Forest [29] 0.1351 94.14 82.93 98.43

LOF [30] 0.2146 85.55 59.52 95.36
OC-SVM [31] 0.9762 51.19 60.25 90.89

Our Method [9] 0.0959 96 86.78 98.81

Table 4: Ablation study results of Spanish Dialect Dataset

Methods EER AUROC AUPR
(IN)

AUPR
(OUT)

CBLOF [28] 0.2836 77.8 64 86.02
Isolation

Forest [29] 0.2791 78.36 66.47 85.52

LOF [30] 0.4412 58.07 39.88 71.70
OC-SVM [31] 0.6698 64.82 69.12 85.91

Our Method [9] 0.2726 80.31 71.33 86.76

5.5. Quantitative Comparison

We compare our method to other state-of-the-art methods dis-
cussed in recent literature and have reported their performance
in Table 5 and Table 6 for each dialect dataset. We use the
same Wave2vec2.0 model as the backbone throughout all these
comparison methods to validate the comparison setup. From
these results, it is very prominent that our proposed method out-
performs other methods by considerable margins. Since our
method makes use of multiple hidden layer embeddings and
the KNN classifier model, it outperforms the closest method
MD [6] and RMD [14].

Table 5: Quantitative Comparison Results of Spanish Dialect
Dataset

Methods EER AUROC AUPR
(IN)

AUPR
(OUT)

Max Thresold [10] 0.4227 63.54 57.28 74.52
DOC [11] 0.3250 55.34 66.98 79.67

Openmax [12] 0.3585 55.81 37.84 71.56
MD [6] 0.3116 74.94 63.79 84.6

SNGP [13] 0.2496 62.39 55.31 78.65
RMD [14] 0.3106 75.02 63.07 84.64

Our method 0.2726 80.31 71.33 86.76

Table 6: Quantitative Comparison Results of English Dialect
Dataset

Methods EER AUROC AUPR
(IN)

AUPR
(OUT)

Max Thresold [10] 0.1342 63.81 56.98 90.22
DOC [11] 0.3376 53.94 52.88 94.93

Openmax [12] 0.3468 78.34 56.51 91.54
MD [6] 0.3004 78.35 51.62 93.19

SNGP [13] 0.1716 86.38 57.37 95.13
RMD [14] 0.2876 79.97 49.63 94.17

Our method 0.0959 96 86.78 98.81

6. Conclusion
This paper presents the dialect classification problem in open-
world scenarios and proposes a wav2vec 2.0 transformer model-
based method to not only recognize dialects known during the
training process but also detect unknown dialects as rejected
classes at the inference time. We test our approach on two
large-scale open-source dialect speech datasets and also present
its performance comparison with other methods that are widely
used in vision and language processing. Furthermore, our quan-
titative comparison experiment also indicates that integrating
several intermediate layer output vectors to compute Maha-
lanobis distance-based feature vectors delivers higher perfor-
mance than other prior Mahalanobis distance-based OOD de-
tection methods [6, 14]. In future work, we would like to inves-
tigate how adversarial training and contrastive learning can be
helpful for out-of-distribution dialect classification.
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