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Abstract
Speech separation aims to decompose mixed speeches into in-
dependent signals. Prior research on monaural time-domain
speech separation has made great progress in supervised man-
ners. Almost all of these works are trained on simulated
mixed speech signals since obtaining ground truth for real-
world mixed signals is problematic. To this end, we propose
a novel semi-supervised learning method for speech separation
(SSLM-SS), which leverages mixed speeches without ground
truth. In particular, for this type of data, we further put for-
ward a non-intrusive separated speech quality prediction net-
work (SSQP-Net) based on self-supervised learning. According
to the results, the linear correlation coefficient between the pre-
dicted results of SSQP-Net and the ground truth achieves 0.9.
Moreover, the performance of SSLM-SS equipped with SSQP-
Net exhibits an improvement of 0.2 dB and 1.1 dB compared to
the mixture invariant training (MixIT) in the conditions of in-
volving 10% and 50% labeled data respectively, and rivals fully
supervised learning.
Index Terms: monaural speech separation, semi-supervised
learning, self-supervised learning, non-intrusive SI-SNR esti-
mation

1. Introduction
Speech separation has emerged as a highly sought-after topic in
speech-related fields. In recent years, numerous speech separa-
tion models (SSMs) have demonstrated impressive performance
on the scale-invariant signal-to-noise ratio (SI-SNR) using su-
pervised learning approaches [1, 2]. Notable models include
Conv-Tasnet (CTN) [3], Dual-path Recurrent Neural Network
(DR) [4], and SepFormer (SF) [5]. These models have been
trained and evaluated on public data sets such as WSJ0-2Mix
[6] and LibriMix [7], where mixed signals are synthesized us-
ing speech samples from the Wall Street Journal (WSJ) and Lib-
riSpeech [8]. However, synthetic data sets suffer from a com-
mon limitation: they lack realism. To address this issue, the
WHAM! [9] and WHAMR! [10] datasets have been introduced,
which incorporate real-world noise and reverberation into syn-
thesized signals. Despite the significant progress made, there
still remains a gap between synthetically mixed speeches and
real-world mixed speeches [11, 12]. Mixture invariant training
(MixIT) has been proposed for training speech separation mod-
els without relying on ground truth. During training, MixIT
remixes the inputs of mixed signals, creating a Mixture of Mix-
ture (MoM), and uses the mixed signals as targets to separate
MoM [8]. However, the high accuracy achieved by MixIT is
attributed to the inclusion of a large amount of non-mixed data
in the training dataset, which leads to a training approach that
resembles common supervised methods.

On the other hand, the remarkable results from prior stud-
ies on the objective assessment of the perceptual evaluation of
speech quality (PESQ) [13] and the mean opinion score (MOS),
the commonly used metrics in speech enhancement and voice
conversion, demonstrate the potential for high-quality and non-
intrusive objective speech assessment in a wide range of settings
[14, 15, 16, 17]. One approach utilizing convolutional neural
networks (CNNs) to predict the SI-SNR value from the mixture
and separated signals performs well [11]. However, it is con-
sidered insufficient for two reasons. Firstly, the target SI-SNR
value used to train the prediction model was compressed be-
tween 0-10 dB, suggesting that the reported error could poten-
tially be much greater at the actual scale. Secondly, the model
assesses one separated signal from the mixed signal at a time.
While this approach maintains consistency with the original SI-
SNR calculation formula, processing all separated speech sig-
nals simultaneously could provide convenience in the context of
this paper where it is required to predict SI-SNRs for multiple
separated speech signals.

Building upon the Asteroid framework [18], we introduce
a novel semi-supervised learning method for monaural time-
domain speech separation (SSLM-SS) embracing a pre-trained
SI-SNR estimator which is referred to as non-intrusive sepa-
rated speech quality prediction network (SSQP-Net) and pro-
vides supervision for unlabeled signals. Instead of learning
speech features from scratch, SSQP-Net utilizes a pre-trained
module to extract robust speech features from a large-scale
dataset of unlabeled speech signals via self-supervised repre-
sentation learning (SSL) [19]. After coupling this with an SI-
SNR prediction module, the entire network is fine-tuned on the
SI-SNR estimation task. According to our experimental results,
SSQP-Net can outperform previous work [11]. Most impor-
tantly, different from this prior work that compresses SI-SNR
value in 0-10 dB, SSQP-Net can predict the separated speech
at true scale, for example, separated signals with greater SI-
SNR values than 10 dB, which is pivotal to provide reliable la-
bels during semi-supervised learning for signals without ground
truth. By using SSQP-Net, SSLM-SS can achieve better perfor-
mance than the fully supervised method. Moreover, we com-
pare SSLM-SS with MixIT. Experimental results prove the su-
periority of SSLM-SS in the same condition. We eventually
validate our work on the real-life dataset LibriCSS [20], and
the results consistently prove the effectiveness of the proposed
method.

2. Related knowledge
2.1. SI-SNR

In previous monaural time-domain speech separation models
based on supervised learning, SI-SNR e is commonly used to
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(a) SSQP-Net training flow chart. We use a fixed SSM with
the best checkpoint to train the SSQP-Net. m is the mixed
signal.

𝒎
SSM1

(fixed with 
best ckpt)

ො𝒔𝟏

ො𝒔𝟐
FE AS

SSQP-Net

Ƹ𝑒1

Ƹ𝑒2

SSM2 
(from 

scratch)

SI-SNR formula

Batch

𝒎 (has truth)

𝒎 (has no truth) SSQP-Net (fixed)

𝒆 (ℒsup)

ො𝒆 (ℒunsup )

SI-SNR formula
𝒔

ො𝒔
𝑒 (True SI-SNR value) SSQP-Net

𝒎

ො𝒔
Ƹ𝑒 (Estimated SI-SNR value)

𝒎 SSM 
(fixed)

ො𝒔𝟏

ො𝒔𝟐

Ƹ𝑒1

Ƹ𝑒2

𝒎 SSM 
(fixed)

ො𝒔𝟏

ො𝒔𝟐

Ƹ𝑒1

Ƹ𝑒2

FE AS

SSQP-Net
FE AS

SSQP-Net

FE AS

SSQP-Net

(b) SSLM-SS on batch level. We use the pre-trained SSQP-Net to
provide estimated SI-SNR values and train the SSM2.
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(c) Supervised part.
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(d) Unsupervised part.

Figure 1: Overall structure of SSLM-SS. In our work, the SSM1 with the best checkpoint used in (a) is DR, and the SSM2 to be trained
from scratch in (b) is CTN. Tangerine and aquamarine depict the supervised and unsupervised parts respectively in the entire SSLM-SS
structure.

measure the similarity of separated signal ŝ and corresponding
clean reference s as follows [2]:

e = 10 log10
∥ sp ∥2

∥ ŝ− sp ∥2 (1)

where sp denotes the projection of ŝ on s:

sp =
⟨ŝ, s⟩s
∥ s ∥2 (2)

2.2. SSL

Directly modeling speech for a specific task may not lead to the
discovery of universal features, such as contextualized represen-
tations. However, these representations can be learned through
SSL by training the model to distinguish the target sample from
distracting samples [19, 21, 22, 23]. This is formulated as:

Z = h1(x) (3)
H = h2(m(Z)) (4)

where h1(·) is a series of CNNs that extracts information from
the input waveform x in a fixed length, h2(·) is a transformer
that encodes the masked localized representations into contex-
tualized representations, and m(·) is a masking operation. The
final step in various works differs greatly. Some works use an
additional quantization operation q(·) to generate learned rep-
resentations from unmasked localized representations by com-
puting Q = q(Z) and force the system to distinguish qt from a
set of elements of Q given ht [21]. Others produce temporary
ground truth C by clustering MFCC features beforehand and
prompt the model to discriminate ct from a set of elements of
C given ht [22, 23].

3. Methods
3.1. SSLM-SS

In this work, we focus on 2-speaker separation. Fig. 1 illustrates
the entire picture of SSLM-SS from the batch’s perspective. In
each batch of training, the SI-SNR formula calculates SI-SNR
values for separated signals that have ground truth available,
while SSQP-Net predicts SI-SNR values for separated signals
that don’t have ground truth. The cost function of SSLM-SS is
as follows

LSSLM−SS = (1− f(t))Lsup + f(t)Lunsup (5)
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Figure 2: Diagrams of OTFP (top) and OTFS (bottom).

where f(t) denotes the weight function, and t denotes the num-
ber of training batch.

3.2. SSQP-Net

Extending the previous SI-SNR estimator in [11] that takes one
separated signal and the mixture as inputs at a time, which is de-
noted as one-time-for-single (OTFS), proposed SSQP-Net also
checks another straightforward modeling approach one-time-
for-pair (OTFP) that processes two separated signals as a pair.
Notably, the first step for both OTFS and OTFP in SSQP-Net
is concatenation along the time dimension, which differs from
the previous one [11] that used CNNs, where concatenation is
performed along the channel dimension. OTFS and OTFP are
illustrated in Fig. 2. The SSQP-Net consists of a feature extrac-
tion (FE) module and an SI-SNR assessment (AS) module.

3.2.1. FE module

FE module aims to extract features from speech signals. We
construct the FE module through OTFP and OTFS as follows:

F = gotfp(m, ŝ1, ŝ2) (6)
F = gotfs(m, ŝ) (7)

where gotfp(·) and gotfs(·) describe FE modules pre-trained via
SSL and shape SSQP-Net in OTFP and OTFS manners, respec-
tively. ŝ1 and ŝ2 represent the two separated signals from the
same mixture signal m, while ŝ represents each of the sepa-
rated signals from m. The extracted features are represented
by F ∈ Rdfeature×dframe .
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Figure 3: The distributions of training data of the best three
checkpoints using different SSMs.

3.2.2. SI-SNR AS module

With the powerful feature extraction module obtained through
SSL, the SI-SNR assessment module is constructed simply by
performing an average operation over frames and applying a
linear transformation:

ê = W (
1

N
FI) + b (8)

where I ∈ Rdframe×1 represents the matrix of ones, N rep-
resents the number of frames. W ∈ Rdoutput×dfeature and
b ∈ Rdoutput×1 are weight and bias respectively. The dimen-
sion of doutput is determined by the type of FE module.

4. Experiment configuration
The experiment consists of SSQP-Net and SSLM-SS parts, and
both parts are trained on NVIDIA GeForce RTX 3080 Ti. All
datasets are from Libri2Mix with a sampling rate of 8 kHz.

4.1. Experiment of SSQP-Net

Following the data preparation method described in [11], we
adopt the best checkpoints in each of the three SSMs: SF, DR,
and CTN. We use these checkpoints to separate the mixture sig-
nals of train-100 and use clean references to calculate the true
SI-SNR of every sample. These separated signals and corre-
sponding SI-SNR values are used as the training set to train
SSQP-Net. Likewise, validation and test sets are created by us-
ing three SSMs to separate subset dev and test of Libri2Mix.
The distribution of each training set is shown in Fig. 3.

This study will explore Wav2vec 2.0 (wav2vec2), HuBERT,
and WavLM models for FE module, which have been trained
on large-scale unlabeled datasets LibriSpeech, Libri-light, Lib-
riVox, and Mix 94k hr through SSL. Each of these models has
three available scale types, and the basic one, with features in
768 dimensions, is chosen. The cost function is the mean ab-
solute error (MAE). During fine-tuning, the warm-up learning
strategy [24] is employed, where the learning rate is increased
to 0.0001 in the first 10 epochs, and then halved if there is no
improvement on the validation dataset for 4 consecutive epochs.
In the trials with the OTFP manner, predicted SI-SNRs are av-
eraged over sources.

For evaluation, we use linear correlation coefficient (LCC)
to make a comparison with a prior model in [14], and MAE is

used to compare two modeling manners: OTFP and OTFS.

4.2. Experiment of SSLM-SS

We use SSQP-Net trained on the dataset generated by the best
checkpoint of DR with wav2vec2 in the OTFP manner to pre-
dict SI-SNR values. The SSLM-SS is then trained on a subset of
train-360 that has 13900 utterances and validated on dev. The
CTN is used as the SSM in SSLM-SS. It is worth noting that
CTN here will be trained from scratch. We examine three ra-
tios using labeled signals in 10%, 50%, and 100%. We use the
utterance permutation invariant training method (uPIT) to pro-
cess labeled signals [25]. The number of training epochs is 150,
from which we design the weight function as

f(t) = t/300 (9)

For the hyper-parameters of CTN, we use the window size
of 16 samples and the hopping size of 8 samples. For separa-
tion blocks of CTN, we use 6 blocks and repeat 3 times. Each
sample is further segmented with 3s long before being fed to the
CTN model. The learning rate is initialized at 0.001 and halved
every five epochs when no dropping on the validation dataset.

We first evaluate our work on test set of Libri2Mix and re-
port the results in SI-SNRi. This metric will filter out the effects
of mixing conditions. Furthermore, we evaluate our work on
the real-life dataset LibriCSS which derives from LibriSpeech
and simulates a conversation by reading the corpus sentences
alternately. It involves six subsets with varying overlapping ra-
tios, and we exclude two subsets where overlapping ratios are
0. There are no references to clean utterances in LibriCSS, tran-
scriptions are instead provided as labels. We use the single-
channel utterance-wise evaluation schemes, except that we use
a different SSL-based ASR model [21]. The recognized results
will be evaluated in word error rate (WER).

5. Results and discussion
5.1. Results of SSQP-Net

5.1.1. Comparison with baseline

Table 1 shows the results in LCC. First, reported LCCs of base-
line are rough 0.80, while SSQP-Net can yield better LCCs than
baseline on both match and mismatch conditions. On match
conditions, the trials with the training dataset generated by DP
achieve the best and most stable performance of rough 0.90. All
trials with FE of WavLM obtain the best LCCs on three test sets.

Table 1: LCC results of SI-SNR predictions.

Models SSM FE Test sets
SF DR CTN

Baseline [11] SF CNNs 0.80 0.80 0.81

SSQP-Net

SF
wav2vec2 0.87 0.89 0.85
HuBERT 0.85 0.86 0.82
WavLM 0.87 0.90 0.86

DR
wav2vec2 0.86 0.90 0.87
HuBERT 0.84 0.89 0.84
WavLM 0.86 0.90 0.87

CTN
wav2vec2 0.85 0.89 0.88
HuBERT 0.84 0.89 0.89
WavLM 0.86 0.90 0.89
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Figure 4: The scatter plot of the baseline and SSQP-Net (DR)
on test dataset generated by well-trained DR model.

Table 2: MAE (dB) results of wav2vec2 using OTFP and OTFS.

Type SSM Test sets
SF DR CTN

OTFP
SF 1.39 2.02 1.77
DR 1.28 1.39 1.33
CTN 1.59 1.28 1.20

OTFS
SF 1.30 2.00 1.57
DR 1.36 1.31 1.29
CTN 1.49 1.62 1.20

Since WavLM introduces a mechanism of gated relative posi-
tion bias and further pre-trains on overlapping speeches, it can
provide more appropriate features than wav2vec2 or HuBERT.

We exhibit a scatter plot of the baseline and SSQP-Net, the
model trained on the training dataset generated by DR, on the
test set generated by DR in Fig. 4, from which we can intu-
itively know the advantages of SSQP-Net (DR) on separated
signals with high SI-SNRs, where baseline model is unable to
make a precise prediction. This is also the reason why we don’t
directly use the baseline model to provide SI-SNR values.

5.1.2. Comparison of OTFP and OTFS

Following experiments using OTFP and FE of wav2vec2, we
further examine the way of OTFS, and results on MAE are re-
ported in Table 2. We observe that both approaches produce
close outcomes. In most cases, trials with OTFS can get slightly
better MAE than those with OTFP. This suggests that the com-
bined features of all separated signals from the same mixture
are not necessary to predict SI-SNR values whose original cal-
culation formula also excludes features from the opponent.

5.2. Results of SSLM-SS

Table 3 displays the SI-SNRi results of MixIT and SSLM-SS.
By using the fully supervised training approach, the CTN model
achieves 13.0 dB, while this number drops drastically to 8.8 dB
when the amount of training data is shrunk to one-tenth. In the
trial where the proportion of labeled data is 10%, the result of
MixIT is 11.5 dB. In contrast, SSLM-SS can yield a slight im-
provement of 0.2 dB. This figure is enlarged to 1.1 dB in trials

Table 3: SI-SNRi (dB) results of baselines and SSLM-SS. In im-
plementing of CTN, % supervised data indicates the proportion
of data used for fully supervised training.

Models % supervised data
10% 50% 100%

CTN 8.8 11.6 13.0
MixIT [26] 11.5 11.8 -
SSLM-SS 11.7 12.9 -

using 50% labeled data. The performance decreases dramati-
cally when the labeled data only accounts for 10%, a possible
reason is that the proposed SSQP-Net cannot accurately process
signals with small SI-SNR data, and the model is fed samples of
unreliable SI-SNRs in the early stage of training. The trade-off
between the accurate prediction of high and small SI-SNR data
will be further investigated in future work.

Finally, SSLM-SS is examined on LibriCSS in Table 4.
In subsets with high overlapping ratios, SSLM-SS reduces the
WERs compared to mixture whose results are obtained by rec-
ognizing the mixed speeches. SSLM-SS (50%) and SSLM-SS
(10%) outperform CTN (50%) and CTN (10%) respectively.
Specifically, SSLM-SS (10%) win CTN (10%) 2.8% on the sub-
set with a 40% overlapping ratio. Aiming at fully supervised
CTN (100%), the proposed SSLM-SS (50%) reaches closer
WERs on the subsets with varying overlapping ratios.

Table 4: WER (%) results on LibriCSS.

Models LibriCSS (overlap ratio in%)
10 20 30 40

Mixture 9.2 15.3 24.4 32.5
CTN (100%) 9.4 12.5 18.1 21.3

CTN (50%) 11.3 14.9 20.4 25.0
SSLM-SS (50%) 11.2 14.5 20.1 23.2

CTN (10%) 12.7 16.8 24.1 28.5
SSLM-SS (10%) 12.1 15.6 21.1 25.7

6. Conclusion
In this work, we have put forward a novel semi-supervised train-
ing method for speech separation (SSLM-SS). Different from
previous models, SSLM-SS contains an SSQP-Net part that can
predict the SI-SNR value for separated signals in the absence
of clean references. SSQP-Net outperforms the related work
by about 10% on LCC. Most importantly, SSQP-Net can pre-
cisely predict separated signals with high SI-SNR, which is su-
per desired for SSLM-SS. Equipping with SSQP-Net, SSLM-
SS shows the powerful ability to achieve close performance as
fully supervised training at the signal level, which is also su-
perior to MixIT. Through a further examination on LibriCSS,
SSLM-SS performs consistently great on real mixed signals. A
promising future work is an investigation of training SSQP-Net
on data with diverse SI-SNR values.
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