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Abstract
In this paper we investigate several techniques for improving
the performance of RNN transducer (RNNT) acoustic models
for conversational speech recognition and report state-of-the-art
word error rates (WERs) on the 2000-hour Switchboard dataset.
We show that n-best label smoothing and length perturbation
which show improved performance on the smaller 300-hour
dataset are also very effective on large datasets. We further give
a rigorous theoretical interpretation of the n-best label smoothing
based on stochastic approximation for training RNNT under the
maximum likelihood criterion. Random quantization is also
introduced to improve the generalization of RNNT models. On
the 2000-hour Switchboard dataset, we report a single model
performance of 4.9% and 7.7% WERs on the Switchboard and
CallHome portions of NIST Hub5 2000, 7.1% on NIST Hub5
2001 and 6.8% on NIST RT03, without using external LMs.
Index Terms: RNN transducer, label smoothing, length pertur-
bation, random quantization, Switchboard dataset

1. Introduction
End-to-end (E2E) automatic speech recognition (ASR) systems
based on deep neural networks (DNNs) have made great progress
in recent years [1, 2, 3, 4]. Among the E2E ASR frameworks,
RNN transducer (RNNT) models [5] emerge as a promising op-
tion due to their competitive performance and streaming friendly
nature, which makes them attractive in real-world deployment
[6, 7, 8, 9].

In this work we focus on improving the performance of
RNNT acoustic models on large scale English conversational
ASR. First, we investigate n-best label smoothing and length per-
turbation and show their effectiveness on the 2000-hour Switch-
board dataset. The two techniques were previously shown to
be helpful on the 300-hour Switchboard task [10]. We show in
this work that they generalize well on 2000-hour Switchboard.
Furthermore, we give a rigorous mathematical formulation and
theoretical interpretation of n-best label smoothing from the
perspective of stochastic approximation under the maximum
likelihood (ML) training criterion. We demonstrate that n-best
label smoothing along with iterative stochastic gradient descent
(SGD) amounts to a doubly stochastic approximation optimiza-
tion process. Other than the above two techniques, we also
introduce random quantization in the input logmel feature space
to improve the robustness and generalization of the RNNT acous-
tic models. With these techniques, we are able to improve upon
a high-performing RNNT model and achieve state-of-the-art
word error rates (WERs) on the 2000-hour Switchboard dataset
without using external LMs.

The remainder of the paper is organized as follows. Section
2 describes the RNNT framework. Section 3 gives the mathe-

matical formulation of n-best label smoothing. Sections 4 and 5
give the details of length perturbation and random quantization.
Training and decoding recipes are presented in Section 6 and
experimental results are reported in Section 7. Finally, Section 8
concludes the paper with a summary.

2. RNN Transducers
We follow the notation in [5]. Let X denote the input space
and Y the output space. Let x = (x1, x2, · · · , xT ) be the
input acoustic sequence of length T where xt ∈ X and y =
(y1, y2, · · · , yU ) be the output label sequence of length U where
yu ∈ Y . Define the extended output space

Ȳ = Y ∪ {∅} (1)

where ∅ represents a null output. The acoustic features xt
are embedded in a latent space by a convolution-augmented
transformer (Conformer) [11], referred to as the transcription
network T

ft = T (x1:T , t). (2)

The label tokens yu are embedded in a latent space by a uni-
directional LSTM network, referred to as the prediction network
P:

gu = P(y[1:u−1], u). (3)

Given the acoustic embedding ft and the label token em-
bedding gu, the predictive output probability at (t, u) is imple-
mented as

p(·|t, u) = softmax[Wouttanh(Wencft �Wpredgu + b)] (4)

where matrices Wenc and Wpred are linear transforms that
project ft and gu into the same joint latent space. The fusion
of embeddings from the transcription and prediction networks
is carried out through elementwise multiplicative integration
[8, 12]. Compared to additive integration, multiplicative integra-
tion promotes high-order interaction and gives superior gating
property. After the fusion of embeddings, a hyperbolic tangent
nonlinearity is applied and then projected to the output space by
a linear transform Wout and normalized by softmax, producing
a predictive probability estimate.

3. N-best Label Smoothing
N-best label smoothing was used in [10] for the 300-hour Switch-
board dataset. In this paper, we show that it generalizes well to
the 2000-hour Switchboard dataset. In this section we give its rig-
orous mathematical formulation and its theoretical interpretation
behind stochastic approximation [13].
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Conventional label smoothing is applied to classification
problems under a cross-entropy loss to avoid over-confidence.
In this type of problem, labels are typically provided as one-hot
vectors. Suppose y is a class label for a sample x and there are
K classes in total. Label smoothing smooths the label with a
uniform distribution over K classes weighted by ε (0 ≤ ε ≤ 1)
as shown in Eq.5 where 1 is an all-ones vector

ỹ = (1− ε) · y + ε · 1
K
· 1 (5)

Suppose p is the ground truth (one-hot) distribution, q is the
distribution to be learned and u is the uniform distribution. Label
smoothing imposes a regularization term

∑n
i=1 Hi(u, q) to the

original cross-entropy term
∑n
i=1 Hi(p, q):

L = (1− ε)∑n
i=1 Hi(p, q) + ε

∑n
i=1 Hi(u, q). (6)

where n is the total number of samples.
In RNNT, the input sequence x belongs to the set X ∗ of

all sequences over the input space X and the the output label
sequence y belongs to the set Y∗ of all sequences over the output
space Y . To differentiate the ground truth label sequence and
alternative label sequence for future discussion, we use ȳ for the
ground truth label sequence and ŷ for alternative label sequences.
RNNTs are trained under the ML loss function [5]

L = − logP (ȳ|x). (7)

A natural way of applying label smoothing is to treat the output
symbols in Y as classes and regularize the output distribution of
the softmax function with a uniform distribution as Eq.6. How-
ever, this scheme only smooths local decisions while RNNT
learning is on the whole sequence globally. Our pilot experi-
ments using this local smoothing approach give rise to degraded
performance.

We then approach this sequence label smoothing problem
from a sequence classification perspective. Each sequence may
represent a class and all sequences in Y∗ form a countably in-
finite set of classes in that label sequence space. Therefore, we
minimize the following loss function

Ls = Ef(yk|x)[− logP (yk|x)] (8)

where the expectation is taken over the distribution of all label
sequences f(yk|x) in the label space Y∗. So Eq.8 is a smoothed
version of the conventional ML loss function for RNNT with
respect to all label sequences.

We approximate the label sequence space Y∗ which consists
of countably infinite number of classes by a space Ωy|x which
consists of the ground truth label ȳ and K other representative
samples:

Y∗ ≈ Ωy|x , {ȳ} ∪ {ŷ1, · · · , ŷK} (9)

Under this approximation, the loss function in Eq.8 is changed
to

Ls = Eq(yk|x)[− logP (yk|x)]. (10)

The expectation is evaluated with respect to the distribution
q(yk|x) of K + 1 classes in the approximated label space Ωy|x
in Eq.9.

We choose the distribution q(yk|x) of K + 1 classes analo-
gously to the conventional label smoothing in Eq.5:

q(yk|x) =





1− ε, yk ∈ {ȳ}

ε/(K + 1), yk ∈ {ŷ1, · · · , ŷK}
(11)

If the distribution q(yk|x) is a delta function on the ground truth
label ȳ

q(yk|x) = δ(y − ȳ) (12)

then the loss function is equivalent to the conventional ML loss
function

Ls = Eδ(y−ȳ)[− logP (yk|x)] = − logP (ȳ|x). (13)

The expectation term in Eq.10 is computationally demand-
ing. We carry out the minimization using stochastic approxi-
mation [13] in the SGD-based iterative optimization framework.
In each SGD iteration we draw a random sample ỹ from the
distribution q(yk|x) and use it to approximate the expectation

Eq(yk|x)[− logP (yk|x)] ≈ − logP (ỹ|x). (14)

Specifically, with probability 1− ε we choose the ground truth
label ȳ and with probability ε we choose uniformly at random a
label ŷi from the K alternative samples {ŷ1, · · · , ŷK}.

Note that since SGD itself is based on stochastic approxima-
tion where the expectation of the gradient over all data samples
is approximated by a stochastic gradient evaluated from a small
number of random data samples in each iteration, the proposed
sequence label smoothing amounts to a doubly stochastic ap-
proximation strategy.

In this work, the alternative samples are chosen from n-best
hypotheses. There are a few advantages to using the n-best
hypotheses (along with the ground truth) to approximate the
label sequence space Y∗ given an input sequence x. First, the
space Ωy|x with n-best hypotheses and the ground truth label
gives a good approximation to the expectation over the space
Y∗ in terms of likelihood as n-best hypotheses contribute high
likelihood compared to some random label sequences. Second,
n-best hypotheses give a reasonable representation of insertion,
deletion and substitution patterns as label sequences. Third, since
each n-best hypothesis does not significantly differ from the
ground truth label sequence, their gradients do not significantly
deviate from each other either. The gradient evaluated from a
competing n-best hypothesis is equivalent to a small perturbation
to the one using the ground truth label. This makes the training
more stable in practice.

4. Length Perturbation
We implement length perturbation following the algorithm in
[10] which randomly drops and inserts a number of frames in
an input acoustic feature sequence. Compared to other data
augmentation techniques such as SpliceOut [14] and Fill-in-
frames [15], length perturbation perturbs an utterance both ways.

Length perturbation as a data augmentation technique per-
turbs the length of an utterance. Moreover, it perturbs the “mem-
ory” of a sequence model to avoid simply memorizing the history
of the sequence in the training and hence improves the general-
ization capability of the models. In this work we confirm that
length perturbation is not only helpful when the data size is mod-
est (300-hour Switchboard dataset) but also helpful when the
data size is large (2000-hour Switchboard dataset).

5. Random Quantization
In this section we introduce random quantization to the input
feature space to improve model robustness. For an input feature
sequence x = (x1, x2, · · · , xT ) and xt ∈ Rd, we first evaluate
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(a) logmel of original utterance

(b) logmel after 16-level quantization

(c) logmel after 8-level quantization

(d) logmel after 4-level quantization

Figure 1: Illustration of logmel features after quantization using
various quantization levels.

the range [xmin, xmax] of feature values in this T × d array and
make a perturbation to the endpoints of the interval

x′min = xmin × (1 + δ1) (15)

x′max = xmax × (1 + δ2) (16)

where δ1 and δ2 are random variables in [−0.5, 0.5]. Next, we
quantize each dimension with random levels that are uniform in
[x′min, x

′
max]. Fig.1 illustrates the original logmel features of an

input utterance and the logmel features after quantization with
various quantization levels L

x̃t = QL(xt). (17)

whereQ is a uniform quantizer on [x′min, x
′
max] and L is a random

variable. In the training, random quantization is performed with
a probability which is a hyper-parameter.

Quantization results in a distorted version of the original
feature sequence but still keeps the topographical correlation
between the dimensions and frames. The distortion depends on
the number of quantization levels. Intuitively the quantization
will tolerate to certain degree the mismatch of features as the
mismatched features may fall into the same quantization bin and
give rise to the same output. Therefore random quantization
can promote feature invariance and improve robustness of the
model. Although random vector quantization has been used
in the literature [16, 17], it is not applied for the same reasons
nor in the same context as in this paper where the proposed
random scalar quantization of input features is applied as a data
augmentation technique to improve ASR robustness.

6. Training and Decoding Settings
Dataset We train RNNT acoustic models on the 2000-hour
Switchboard dataset. It consists of 2000 hours of English conver-
sational speech sampled at 8KHz. Speed and tempo perturbation
is conducted offline on the 2000-hour speech, which gives rise to
4 extra replicas of the original speech data. Therefore, the total

amount of training data is 10,000 hours. We measure WERs
on the NIST Hub5 2000 (Switchboard and CallHome), NIST
Hub5 2001 and NIST RT03 evaluation test sets. The Hub5 2000
test set consists of 3.8 hours of speech; the Hub5 2001 test set
consists of 6.2 hours of speech; and the RT03 test set consists
of 6.3 hours of speech. The Hub5 2001 and RT03 evaluation
sets are larger and represent mismatched scenarios from train-
ing. We include them to ensure that the acoustic models are not
over-tuned to the extensively tested Hub5 2000 test set.
RNNT The transcription network is a Conformer. The in-
put to the transcription network is 40-dimensional logmel fea-
tures and their first and second order derivatives. Features of
every two adjacent frames are concatenated which results in
240-dimensional input vectors. There are 512 hidden units and
8 64-dimensional attention heads in each conformer block. The
convolution kernel size is 31. The prediction network is a single-
layer uni-directional LSTM with 1024 cells. The outputs of the
transcription network and the prediction network are projected
down to a 256-dimensional latent space in the joint network. The
softmax layer contains 43 output units which correspond to 42
characters and the null symbol.
Training Schedule The AdamW optimizer [18] is used in train-
ing. The training data is divided into 100 chunks and the training
is conducted sequentially by chunks in a randomized fashion
in each epoch. In each chunk the utterances are organized in a
sorted order. This is equivalent to a curriculum learning strategy
that starts with short utterances to stabilize the training early on
before gradually introducing more difficult, longer utterances.
The batch size is 128 utterances which are distributed to 8 V100
GPUs. We study two learning schedules: OneCycleLR [19] and
long warmup/long hold (LWLH). The training takes 30 epochs.
In the OneCycleLR policy, the maximum learning rate is 5e-4
and it starts with a linear warmup phase from 5e-5 to 5e-4 over
the first 9 epochs followed by a linear annealing phase to 0 for
the next 21 epochs. In LWLH, the maximum learning rate is
1e-3 and it starts at 1e-4 in the first epoch and then linearly scales
up to 1e-3 in the first 10 epochs. It holds for another 6 epochs
before being annealed by 1√

2
every epoch after the 16th epoch.

The learning rate changes in each iteration in OneCycleLR but
only changes across epochs in LWLH. The hyper-parameters
(e.g. maximum learning rate and number of epochs) of both
learning rate schedules have been optimized.
Data Augmentation and Regularization Other than the of-
fline speed and tempo perturbation, two additional data augmen-
tation techniques are conducted on the fly in the data loader.
One is sequence noise injection [20], where a training utterance
is artificially corrupted by adding a randomly selected down-
scaled training utterance from the training set, and the other is
SpecAug [21], where the spectrum of a training utterance is ran-
domly masked in blocks in both the time and frequency domains.
The training is also regularized by dropout with a dropout rate
of 0.25 for the LSTM, 0.1 for the conformer and 0.05 for the
embedding. In addition, DropConnect [22] is applied with a
rate of 0.25, which randomly zeros out elements of the LSTM
hidden-to-hidden transition matrices.
Investigated Techniques in This Work In n-best label smooth-
ing, the probability of applying label smoothing is p = 0.2 and
the number of n-best hypotheses is K = 20. The n-best hy-
potheses are generated by the baseline RNNT models. In length
perturbation, the probability of applying frame skipping and
insertion is ps = pp = 0.6, the fraction of utterances for frame
skipping and insertion is rs = rp = 0.1, the maximum number
of frames to skip is Ts = 7 and the maximum number of frames
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to insert is Tp = 3. In random quantization, the probability
of applying quantization is p = 0.2. There are three possible
quantization levels {16, 8, 4}. If an utterance is chosen for quan-
tization, one of the quantization levels is randomly selected from
this set and feature values are quantized accordingly.
Decoding Inference uses alignment-length synchronous decod-
ing [23], which only allows hypotheses with the same alignment
length in the beam for the beam search. No external LMs are
used.

7. Experimental Results
In Table 1, we report the WERs on n-best label smoothing, length
perturbation and random quantization, respectively, and compare
them with the baseline model without using three techniques
under the two learning schedules, OneCycleLR and LWLH. Note
that the baseline model is already a high-performing RNNT
model with very competitive WERs. It can be seen that all
three techniques improve the performance by themselves under
the two learning schedules. Although there is no significant
difference between the WERs using the two learning schedules,
LWLH appears to give slightly superior performance. Therefore,
in the following experiments, we will use the LWLH learning
schedule to report WERs.

Schedule Hub5’00 Hub5’01 RT’03SWB CH Avg
baseline OneCycleLR 5.5 8.5 7.0 7.9 8.4

LWLH 5.5 8.5 7.0 7.9 8.0
n-best OneCycleLR 5.2 8.1 6.7 7.6 7.8
lab. smth. LWLH 5.0 8.1 6.6 7.4 7.8
len. OneCycleLR 5.1 8.1 6.6 7.3 7.3
perturb. LWLH 5.1 8.1 6.6 7.2 7.4
random OneCycleLR 5.4 8.5 7.0 7.7 8.1
quant. LWLH 5.5 8.3 7.0 7.5 7.7

Table 1: WERs on three test sets using n-best label smoothing,
length perturbation and random quantization under OneCycleLR
and LWLH learning schedules.

params Hub5’00 Hub5’01 RT’03SWB CH Avg
10 conf. blocks 74.1M 5.2 7.9 6.6 7.3 7.1
12 conf. blocks 87.9M 4.9 7.7 6.3 7.1 6.8
13 conf. blocks 94.8M 5.0 7.6 6.3 7.0 7.1

Table 2: WERs on three test sets using n-best label smoothing,
length perturbation and random quantization with 10, 12 and 13
conformer blocks.

In Table 2, we report the WERs on the three test sets when
all three investigated techniques are applied sequentially. The
training is extended from 30 epochs to 33 epochs under LWLH.
We apply n-best label smoothing in the first 20 epochs, length
perturbation in the next 10 epochs and random quantization in the
3 final epochs. We also evaluate the performance by varying the
model size using 10, 12 and 13 conformer blocks, respectively.
The best result is obtained when using 12 conformer blocks.
Under this condition, the WERs are 4.9% and 7.7% on the
Switchboard and CallHome test subsets of the NIST Hub5 2000
evaluation, 7.1% on NIST Hub5 2001 evaluation and 6.8% NIST
RT03 evaluation, respectively.

To the best of our knowledge, this is the state of the art for a
single model on the 2000-hour Switchboard dataset without us-

ing any external LMs. It is also better than many of the reported
results using external LMs.

An ablation study on the three investigated techniques is car-
ried out and results are shown in Table 3 which demonstrates the
impact of each technique to the overall improved performance.
N-best label smoothing and length perturbation contribute on all
three test sets in both matched (e.g. Switchboard in Hub5’00)
and mismatched (e.g. CallHome in Hub5’00 and RT03) con-
ditions. Random quantization mainly contributes to the mis-
matched conditions and therefore makes the model more robust
and improves generalization. This confirms the intuition when
designing the random quantization technique. This ablation
study is also in line with the results in Table 1 with individual
contributions from each technique.

Hub5’00 Hub5’01 RT’03SWB CH Avg
baseline 5.5 8.5 7.0 7.9 8.0
three tech. combined 4.9 7.7 6.3 7.1 6.8
w/o lab. smth. 5.1 8.3 6.7 7.2 7.1
w/o len. pertb. 5.0 8.1 6.6 7.3 7.7
w/o rand. quant. 4.9 7.7 6.3 7.2 7.0

Table 3: Ablation study on the n-best label smoothing, length
perturbation and random quantization.

We compare our results with best single models reported in
literature on the 2000-hour Switchboard dataset without using
external LMs in Table 4.

Model Hub5’00 Hub5’01 RT’03SWB CH Avg
AED ([24]) 4.8 8.0 6.4 7.6 7.8
AED ([25]) 4.8 8.0 6.4 7.3 7.5
DSSformer ([26]) 5.2 8.2 6.7 7.2 7.5
RNNT (this work) 4.9 7.7 6.3 7.1 6.8

Table 4: WERs of best single models reported in literature on
2000-hour Switchboard dataset without using external LMs.
AED stands for attention-based encoder-decoder architecture
and DSSformer stands for diagonal state space augmented trans-
former architecture

8. Conclusion
In this paper we investigate n-best label smoothing, length pertur-
bation and random quantization for improving the performance
of RNNT acoustic models for conversational speech recognition
on the 2000-hour Switchboard dataset.

We show that n-best label smoothing and length perturba-
tion generalize well to large training datasets and yield good
improvement on the 2000-hour Switchboard dataset. We give a
rigorous mathematical formulation of the n-best label smoothing
and show that it amounts to a doubly stochastic approximation
strategy in the SGD framework optimizing a smoothed version
of the conventional ML loss function for RNNT training. In
addition, random quantization helps to improve the model ro-
bustness and generalization to mismatched conditions. With the
three techniques combined, we report 4.9% and 7.7% WERs on
the Switchboard and CallHome of the NIST Hub5 2000, 7.1%
on NIST Hub5 2001 and 6.8% NIST RT03 evaluation test sets,
respectively, which, to the best of our knowledge, is the state
of the art of a single system without using external LMs on the
2000-hour Switchboard dataset.
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