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Abstract
We present a novel, user-friendly approach for controlling pat-
terns of intonation (a fundamental aspect of prosody) within a
neural TTS system. This involves concisely representing F0
contours with the coefficients of their Legendre polynomial se-
ries expansion, and implementing a model (based on FastPitch)
which is conditioned on these sets of coefficients during train-
ing. At inference time the model will explicitly predict a coeffi-
cient set, or a user (eg. human-in-the-loop) can provide a target
coefficient set which audibly alters the intonation of the output
speech, based on just a few values. This is particularly effective
for intonation transfer: where these coefficient targets are ex-
tracted from a ground truth recording, making the synthesised
utterance more closely reflect the intonation of the real speaker.
Index Terms: text-to-speech, speech synthesis, intonation
modelling, prosody control, prosody transfer

1. Introduction
The rise of end-to-end neural text-to-speech (TTS) models has
enabled synthetic voices to sound remarkably natural and intel-
ligible. However, most state-of-the-art TTS systems are unable
to produce different prosodic renditions of a given text, thus
failing to capture a key feature of natural human speech.

Approaches to combat this include prosody control/transfer,
where target prosodic patterns can be manually specified or ex-
tracted from reference recordings. However, most of these tech-
niques involve learning rich latent representations of desired
prosodic features [1, 2], which is resource-intensive and can
lead to source-speaker leakage.

Here, we will focus on control/transfer of one major ele-
ment of prosody: intonation. We have modeled patterns of into-
nation simply: using the first three coefficients of the Legendre
polynomial series expansion of the F0 contour for each utter-
ance. These coefficients are interpretable, representing the av-
erage level, slope, and convexity of F0 respectively. We have
adapted the FastPitch model to be conditioned on a coefficient
set for each training utterance, and explicitly predict coefficients
during inference. In our demo, a user can supply their own
target coefficient set instead (representing desired F0 contour
shape), to influence the intonation in the final synthetic speech.

2. Implementation
2.1. The Data

We trained our model on LJ Speech [3], a public domain speech
dataset with a single American female speaker. The original
dataset contained 13100 utterances with an average length of
6.57 s, however we found that 3-coefficient representations of
these long utterances’ F0 contours tend to be rather flat, and
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Figure 1: Architecture of the new implementation of the Fast-
Pitch model, with ’Coefficient Predictor’ added, where ‘Conv’
= 1D Convolutional, and ‘FC’ = Fully-Connected.

thus would not expose the model to much variety in patterns of
intonation. Therefore, we rechunked this into shorter utterances
based on occurences of commas and full stops in the transcrip-
tions, to create shorter prosodic-phrase-like utterances. This re-
sulted in 18418 utterances with an average length of 3.83 s.

We extracted F0 contours from all utterances, before taking
the average value per phone and normalising values according
to the speaker’s mean/standard deviation of F0 (as this is con-
sistent with FastPitch’s representation of F0 contours). We then
linearly interpolated the corrected contour and used the function
polynomial.legendre.legfit from the numpy pack-
age to return the three coefficients of the Legendre series (of de-
gree 2) which fits each F0 contour with least squared error. Fi-
nally, we range normalised each of the three coefficients across
the dataset between -1 and 1.

2.2. The Model

We adapted FastPitch: a neural text-to-speech model which
rapidly synthesises mel-spectrograms based on input text [4],
and already includes explicit predictors for F0, duration and
energy, allowing control over these features. The open-source
Python code used as a basis for this implementation came from
a fork 1 of NVIDIA’s ‘DeepLearningExamples’ repository [5]
on GitHub.

We added an explicit Coefficient Predictor to the model’s
architecture (as shown in Figure 1) which includes a bidirec-
tional LSTM layer, where the prediction at the final timestep is
taken as the utterance-level coefficient set. The coefficient pre-
diction is made before the F0 predictions, with the hope that F0

1https://github.com/evdv/FastPitches
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Figure 2: F0 contours (interpolated) of ground truth record-
ing vs synthesised versions either with ground truth coefficients
provided as targets, or with no targets provided, for the text ‘the
little stone seal’.

predictions can also be conditioned on the shape of intonation
indicated by the coefficients. These predictions have their mean
squared error loss recorded during training.

During inference, if no coefficient targets are specified,
this prediction is upsampled to the maximum input sequence
length in the batch, reshaped for consistency with other fea-
ture predictions, and masked by the encoder mask to reflect
each different sequence length in the batch, before being em-
bedded and summed to the current encoder output. During
training, and during inference if targets are supplied, it is the
ground truth/target coefficients which are upsampled, reshaped,
masked, embedded and summed to the encoder output.

The final model was trained for 1000 epochs, with a learn-
ing rate of 0.1 and a batch size of 16, on a single GPU.

3. Intonation Transfer Results
3.1. Objective Measures

We synthesised two versions of each text in the test set
(which included 736 utterances): one with coefficients from
the ground truth recording supplied as targets, and one with
no targets supplied. We found that average root-mean-square
error between ground truth and synthesised contours was re-
duced when ground truth coefficient targets were used for syn-
thesis (47.370 Hz) compared to when no targets were used
(55.143 Hz). This suggests that using this method can increase
the similarity in intonation between synthesised speech and hu-
man reference recordings, as exemplified in Figure 2.

3.2. Formal Listening Test

A listening test was conducted with 26 paid participants, using
50 reference recordings from the test set. Listeners were played
the reference recording, followed by two synthesised versions
of the same text (with-targets and no-targets, as above), and had
to select which synthesised version sounded more similar to the
reference in terms of pitch/intonation. The with-targets version
was chosen 63.7% of the time, which was found to be a signif-
icant preference according to a binomial mixed effects model
analysis (β=0.62 (0.65 prob), CI=(0.60,0.70), p < 0.001). This
means that this technique can audibly increase the similarity
in intonation between synthesised speech and human reference
recordings, proving some degree of intonation transfer ability,
at least from recordings of the same speaker/text.

3.3. Informal Extension

We then tested the model’s ability to transfer patterns of intona-
tion from different speakers and different text. A new speaker
was recorded producing the same text (‘she said that she’s your
sister’) as both a declarative statement (with an overall decli-
nation of F0) and a declarative question (with a characteristic
rise in F0 at the end). Three coefficients were then extracted
from each of the contours, creating a ‘statement’ target set, and
a ‘question’ target set. The same text was then synthesised with
each target set, and an informal listening test with 12 partici-
pants found that listeners were always able to correctly distin-
guish which version was intended to be a statement, and which
a question. The same targets were then used to synthesise two
versions of a different text (‘it’s raining in Glasgow’), and lis-
teners were still always able to identify the statement/question
correctly.

These results preliminarily suggest that this approach can
be used to transfer patterns of intonation between different
speakers/texts, and that the effect is obvious enough to alter the
the meaning of a synthesised utterance.

4. Dicussion
We have shown that this approach offers a simple and efficient
way to transfer patterns of intonation from reference recordings
to synthesised speech. We hope to provide an opportunity for
users to extract target coefficient sets from their own reference
recordings or even hand-drawn F0 contours to allow intuitive
human-in-the-loop control over synthesised intonation.

In future we hope to extend this method, for example by us-
ing the coefficients to actually reconstruct an F0 contour within
the model, which should allow FastPitch’s current Pitch Pre-
dictor to be fully replaced; allowing more complete control via
coefficients. Anticipated future applications include using this
technique to model intonation hierarchically (ie. at the word,
phrase, and sentence level simultaneously), to enable more pre-
cise intonation control, and clustering coefficient sets to identify
and recreate general patterns of intonation which correspond to
particular speech acts/emotions.
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