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Abstract
We introduce a monaural neural speaker embeddings extrac-
tor that computes an embedding for each speaker present in a
speech mixture. To allow for supervised training, a teacher-
student approach is employed: the teacher computes the target
embeddings from each speaker’s utterance before the utterances
are added to form the mixture, and the student embedding ex-
tractor is then tasked to reproduce those embeddings from the
speech mixture at its input. The system much more reliably
verifies the presence or absence of a given speaker in a mixture
than a conventional speaker embedding extractor, and even ex-
hibits comparable performance to a multi-channel approach that
exploits spatial information for embedding extraction. Further,
it is shown that a speaker embedding computed from a mixture
can be used to check for the presence of that speaker in another
mixture.
Index Terms: speaker embeddings, teacher-student, multi-
speaker, speaker identification, monaural

1. Introduction
Speaker embeddings are meant to represent the characteristics
of a speaker, while being insensitive to what has been spoken.
The embeddings are computed from segments of speech in such
a way that they exhibit low intra-speaker and large inter-speaker
distance. The current state of the art are neural speaker embed-
ding extractors. They map the input speech segment to the la-
tent space of embedding vectors by means of a neural network,
which can be trained using a contrastive [1] or classification-
based loss [2–4]. Since the number of speakers seen during
training is much larger than the dimension of the latent space,
the model is forced to encode the speaker characteristics rather
than memorizing the speaker labels in the speaker embeddings.
In this way, speaker embedding extractors generalize well to
speakers unseen during training [5]. Speaker embedding ex-
tractors are commonly employed either as auxiliary systems for
speech enhancement [6] or automatic speech recognition [7], as
part of a diarization system [8], or as standalone systems for the
(re-)identification and recognition of speakers [9].

An assumption underlying most current systems is that each
processed audio segment contains only a single speaker of in-
terest. If this assumption is not fulfilled, it is well known that
the quality of such speaker embeddings degrades, and that the
resulting speaker embedding is at most able to represent one of
the speakers in the mixture. Because of this, diarization systems
that employ speaker embedding extractors typically discard re-
gions that contain speech overlap [10], or they use an additional
uncertainty state to account for the lower reliability of speaker
information extracted from those regions of speech [11, 12].

Then, the speakers active in those regions often are inferred
from the context. The extraction of reliable speaker embed-
dings thus rests on the availability of regions where the speaker
of interest is active alone. Even state of the art diarization sys-
tems like the TS-VAD [13] have this dependency on long single-
speaker regions for proper initialization [14].

In highly dynamic situations, e.g. in informal meetings or
in situations where multiple separate conversations are held in
parallel, the requirement that each speaker is at least once solely
active, cannot be fulfilled easily. Here, at least some speakers
will not appear alone, so that a typical speaker embedding ex-
tractor cannot be used to extract a representation of those speak-
ers. One way to approach this issue is to employ a source sepa-
ration module as a preprocessor to the standard speaker embed-
ding extractor [15], which, however, can introduce additional
artefacts into the signal. Alternatively, a multi-channel system
is proposed in [16], which computes features for each sound
direction of arrival to detect and identify speakers.

In this work, we neither require a source separation front-
end nor multi-channel input. Instead, we aim to directly com-
pute from a mixture of two speech signals their respective
speaker embeddings. In a sense, this is similar to source sep-
aration since we extract two embeddings from the input mix-
ture. However, there is a clear difference: unlike the speech
signals, the speaker embeddings cannot be assumed to linearly
superpose in a mixture. As a consequence, a specific setup is
required for training. We employ the teacher-student approach
introduced in our previous work [17]: First, a conventional
speaker embedding extractor is trained on single-speaker utter-
ances. Then, this model is employed as a teacher for the training
of a student embedding extractor. The student’s objective is to
predict those embedding vectors from a segment of speech mix-
ture at its input. One way to view this setup is that the teacher
defines the latent space of speaker embeddings, while the stu-
dent inherits this space and is only tasked to separate a mix-
ture of two speakers into their respective representations in that
space. Contrary to the Wavesplit source separation model [18],
where a speaker representation is jointly learned with the sepa-
ration task, the latent space of the speaker embeddings already
is explicitly provided by the teacher. Therefore, similar to the
problem of source separation, we view this system as a speaker
embedding separation approach.

This work is structured as follows: We start with a descrip-
tion of both the teacher and student models in section 2. Then,
section 3 describes the task of multi-speaker verification and
how we trace it back to the classical speaker verification task.
In section 4, the proposed model is then evaluated against a typ-
ical single-speaker embedding extractor on a multi-speaker ver-
ification task. Finally, we compare our system against a multi-
speaker embedding extractor on realistic meeting recordings.
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Figure 1: Block diagram of the proposed teacher-student train-
ing for multi-speaker embedding extraction

2. Teacher-student based embedding
extraction

The proposed system for multi-speaker embedding extraction
consists of a single-speaker teacher that is used to provide
training targets for a multi-speaker student model. First, the
teacher model is trained with single-speaker utterances. Then,
the teacher model is fixed, and the student network is trained
with speech mixtures at its input and the speaker embeddings
of the teacher as training targets.

2.1. Single-speaker embedding extractor

Essentially, any speaker embedding extractor can be used as a
teacher. In this work, a ResNet34-based d-vector system [4]
is employed, which is a widely used architecture for speaker
embedding extractors [19–21]. First, 80-dimensional log mel
filterbank features x(t), t ∈ {1, . . . , T}, with frame index
t and frames per utterance T are extracted from an utterance
x(ℓ) with time domain sample index ℓ. These features are
passed through the ResNet to obtain frame-wise embeddings
d(t). Then, the embeddings are aggregated by a Time Average
Pooling (TAP) to obtain a single, E-dimensional d-vector d for
the utterance. During training, an additional fully connected
layer is used to predict the speaker label c from this d-vector.
An Additive Angular Margin (AAM)-Softmax loss [22]

cosΘc =
dTwc

|d||wc|
(1)

LAAM = − log
es(cosΘc−a)

es(cosΘc−a) +
∑C

c′=1,c′ ̸=c e
s cosΘc′

(2)

is used as a training criterion. Here, Θc denotes the angle be-
tween the d-vector d and the prototype embedding of the cor-
responding speaker which is defined by the c-th column wc of
the weight matrix of the fully connected layer. C represents the
total number of speakers during training. This loss is a softmax
cross-entropy loss, where the hyperparameters s > 1 and a > 0
modify the loss contributions such that the model builds more
compact clusters after convergence, which improves the over-
all system performance [2]. After training, this single-speaker
model is kept fixed and the d-vectors d are used as targets to
train the student.

2.2. Multi-speaker embedding extraction

For the training of the multi-speaker student system, a speech
mixture y(ℓ) consisting of K single speaker source signals
xk(ℓ) (here, K = 2) is used as input for the system. Then, the
student is tasked to reproduce the d-vectors that are extracted by
the teacher from the single speaker utterances xk(ℓ).

The multi-speaker student’s architecture is in large parts a
mirror of the teacher. First, 80-dimensional log mel filterbank
features y(t) are extracted from the speech mixture. Then, they
are passed through a ResNet34 with a K times larger output
dimension and are rearranged to obtain frame-wise speaker em-
beddings d̂k(t) for each speaker. Additionally, these embed-
dings are then averaged by a local TAP layer with a size of 11
and a stride of 1 to encode context information into each em-
bedding. Then, a Mean Squared Error (MSE)-based similarity
loss

LTS =
1

KT

∑

t

min
π∈P

∑

k

∥dk − d̂πk (t)∥2 (3)

is computed between each frame-wise student embedding d̂k(t)
and the teacher embeddings dk obtained from the single-
speaker observations.

To account for the arbitrary output order of the student em-
beddings, a Permutation Invariant Training (PIT) loss [23, 24]
is used, which assigns the best permutation π between target
and estimated d-vectors for each frame (tPIT). Alternatively, the
permutation can be kept constant for the complete utterance by
moving the min operation in (3) in front of the sum over the
frames t, which is known as uPIT. During inference, an addi-
tional TAP layer aggregates the frame-wise student embeddings
into a single embedding d̂k per speaker.

With this teacher-student training, instead of having to learn
a latent space as well as to separate both active speakers from
each other, the student is trained to directly reproduce the single
speaker embeddings of the teacher, because the latent speaker
embedding space is already defined by the teacher. This sim-
plifies the problem from one of learning a descriptive speaker
space while separating speakers from each other to a task of
speaker embedding separation into an already known, latent
space. An illustration of the complete teacher-student model
is depicted in fig. 1.

3. Speaker verification for overlapping
speech

Typically, the task of speaker verification [25] consists of com-
puting the similarity of two single-speaker utterances and de-
ciding whether they belong to the same speaker. After obtaining
these similarity scores for a complete trial set, they are aggre-
gated into a single list and compared against the target labels.
Then, the Equal Error Rate (EER) and Detection Cost Function
(DCF) are calculated based on the scores and labels to evaluate
the speaker verification performance [25].

However, this task is no longer clearly defined if one or both
of the observations in such a trial pair contain more than one
speaker. Similar to [16] we extend the classical verification task
“single speaker vs. single speaker” (s vs. s) by two additional
scenarios to also consider speech mixtures:
• single speaker vs. mixture (s vs. m)
• mixture vs. mixture (m vs. m).
For multi-speaker embedding extraction, the s vs. m setting is
the most relevant scenario. In most settings, e.g. a meeting
or conversation, each speaker is the sole active speaker at least
at some point in time. Therefore, it can be assumed that these
single-speaker regions can be used to extract embeddings that
are then taken as reference to verify whether this speaker is ac-
tive in regions containing overlapping speech [26]. On the other
hand, the m vs. m scenario is relevant for scenarios, where even
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Figure 2: Multi-speaker verification process. For each active
speech component, an embedding is extracted, and all pairwise
similarities are computed. Only the maximal score is retained
for “any spk” evaluations. For the “per spk” case, the remain-
ing embedding pair also is evaluated in the m vs m scenario.

this constraint cannot be fulfilled, which may happen, e.g., if
multiple simultaneous discussions are ongoing at the same time.

First, we evaluate both scenarios with the goal to determine
whether any speakers are matching between both examples in
a trial pair. Here, from each observation embeddings are ex-
tracted as depicted in fig. 2, and all pairwise similarity scores
between the first half and the second half of a trial pair are cal-
culated, i.e., 2 and 4 in the s vs. m and the m vs. m setting,
respectively, for K = 2. Then, only the maximal similarity
score is retained for evaluation. The calculation of EER and
DCF then is done exactly as for the single-speaker case. Since
only a single similarity score is evaluated, typical single-speaker
embedding extractors can also be evaluated in this setup, even
though they are not designed for it.

For the m vs. m scenario, in addition to this “any spk” eval-
uation, the mixtures are compared per speaker to measure how
well both speakers of a mixture can be represented. Here, the
number of positive target labels is determined through the num-
ber of identical speakers between both mixtures. These labels
are then assigned to the embedding pairs in a greedy fashion be-
ginning by the highest similarity and excluding assigned pairs
for following labels. Therefore, for each trial pair, K scores and
target labels are obtained, as opposed to a single one in the “any
spk” setting. They are then again aggregated and evaluated as
in the s vs. s evaluation to compute both the EER and DCF.

4. Evaluation

4.1. Training setup

For training of both the teacher and the student model, 4 s long
segments of the VoxCeleb corpus [27] are used. For filterbank
feature extraction, a window size of 20ms and a frame advance
of 8ms are chosen. The teacher is trained on single-speaker ut-
terances augmented with noise from the MUSAN corpus [28]
and room impulse responses simulated according to [29]. The
student is trained on speech mixtures simulated with MMS-
MSG [30] that consist of two speakers mixed with a power ratio
between −5 dB to 5 dB. During training, these utterances are
cut to the min scenario, i.e. the longer utterance in the mix-
ture is cut to match the length of the shorter. Again, the same
data augmentation as for the teacher is used. Additionally, after
10 epochs of training, the target embeddings provided by the
teacher are replaced with embeddings computed from different
utterances of the same speaker to make the model more robust
against remaining speaker-unrelated content.

Table 1: Speaker verification performance of the teacher model
on the VoxCeleb1-O trial set (s vs. s)

Model E EER [%] DCF

ECAPA-TDNN [3] 1024 0.87 0.11
ECAPA-TDNN [3] 512 1.01 0.13

ResNet34 256 1.06 0.16

Table 2: Multi-speaker verification performance for the student
model and a multi-speaker embedding extractor trained with a
classification loss on the VoxCeleb1-O m vs. m trials

Loss Permutation EER [%] DCF

LAAM uPIT 29.4 1.0
LAAM tPIT 29.5 1.0

LTS uPIT 19.9 0.88
LTS tPIT 14.1 0.74

4.2. Evaluation sets
For evaluation, the VoxCeleb1-O trial set [27] is extended by
additional examples so that the s vs. m and m vs. m scenarios can
be evaluated1. Here, still at most one speaker is identical in the
two halves of a trial pair as to keep them as close as possible to
the original VoxCeleb1-O trial set and not introduce the number
of identical speakers as an additional design parameter in the
trial sampling.

Additionally, the proposed model is evaluated on the SSLR
database [31]. This database was originally designed for source
localization and consists of re-recordings of AMI meetings [32].
It was already used in [16] for the evaluation of multi-channel
multi-speaker embeddings with the same scenarios as described
in section 3. All models are evaluated w.r.t. EER and DCF. For
DCF calculation, a prior probability of 0.01 [25] is chosen for
the single speaker evaluation, and of 0.05 for the multi-speaker
verification.

4.3. Performance of the teacher model
The proposed teacher-student approach requires high-quality
teacher embeddings that are used as target. Table 1 shows the
teacher model’s performance on the VoxCeleb1-O trial set com-
pared to the popular ECAPA-TDNN [3]. Here, it can be seen
that the ResNet is able to achieve a comparable performance. To
keep a frame-wise resolution for loss computation, the ResNet
architecture is the better choice for the student. Although any
speaker embedding extractor can be used as teacher, we also
chose a ResNet-based teacher to have matching configurations
for teacher and student.

4.4. Necessity of teacher-student training
First, we compare our proposed teacher-student training with a
multi-speaker model that is trained from scratch using the same
classification loss as the teacher, albeit with a PIT objective.
This second training approach is reminiscent of the way neural
speech separation models are trained. Both models, the stu-
dent of the T/S-approach and the extractor trained from scratch,
use the same architecture described in section 2 and only dif-
fer in the loss used for training. Table 2 shows that training
the speaker embedding extractor with a classification-based loss
does not lead to a meaningful representation of the speaker em-
beddings independent of whether the permutation is solved per

1Trials are available at https://zenodo.org/record/7683872
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Table 3: Multi-speaker verification performance of the pro-
posed model compared to a classical speaker embedding ex-
tractor on VoxCeleb mixtures. Model 1 and 2 indicate the model
used on the first and second half of a trial pair.

Model 1 Model 2 Scenario any spk per spk

EER[%] DCF EER[%] DCF

Teacher Teacher s vs. m 18.2 0.57 - -
Teacher Student s vs. m 9.1 0.46 - -

Teacher Teacher m vs. m 47.6 1.0 - -
Student Student m vs. m 15.3 0.74 14.1 0.74

frame or per utterance. On the contrary, the teacher-student ap-
proach results in an EER of 14.1%. Using a training loss not
on a frame-, but on an utterance-level did not work for either
loss function. This shows that the extraction of two embed-
dings from a speech mixture is considerably more intricate than
the extraction of the speakers’ speech signals from the mixture.
This is probably because while the mixture is a linear super-
position of the speech signals, it is not so for the embeddings.
Jointly learning a latent space and then projecting an utterance
into this space leaves too many degrees of freedom for speech
mixtures. However, by providing this latent space through a
pretrained speaker embedding extractor, the (student) model ex-
tracts significantly better speaker embeddings that can be used
to distinguish between the speakers.

4.5. Speaker embedding extraction for speech mixtures

Next, we compare the advantage of using a distinct multi-
speaker embedding extractor over using only a single-speaker
embedding extractor even in the presence of overlapping
speech. Here, both the teacher and proposed model are eval-
uated on the extended VoxCeleb1-O trial sets. For the proposed
model, the teacher is used to extract embeddings from single-
speaker utterances, and the student for the embedding extrac-
tion from speech mixtures. Table 3 depicts the advantage of the
combination of teacher and student over only using a single-
speaker extractor. As expected, the proposed model outper-
forms the teacher in all scenarios. For the s vs. m trials, the
teacher is still able to re-identify speakers in a mixture to some
degree, but its performance drops sharply when switching to
the m vs. m scenario where single-speaker regions are no longer
available. On the contrary, the student is able to achieve an EER
of 15.3%, which is, however, significantly higher compared to
the s vs. m scenario. In the “per spk” evaluation, the error rate
decreases slightly, indicating that both extracted speaker em-
beddings can be used to identify the respective speakers.

To further quantify where the improvement of the student
comes from and how disjoint the student embeddings are from
each other, table 4 evaluates how well the embeddings extracted
from the mixture represent each active speaker. This is done
by calculating the cosine similarity between the speaker em-
beddings extracted from the mixture (d̂k) and the respective
teacher embeddings extracted from the clean, single-speaker
signals (dk). This investigation shows that the teacher is able
to accurately represent a single, the dominant, speaker in a mix-
ture (dy), whereas the similarity to the other speaker stays low.
Compared to that, the student network shows a slightly lower,
albeit still high average similarity to the dominant speaker, and
an increased similarity to the second speaker. Therefore, the
student is able to extract both speakers, not only the dominant
one as the teacher does.

Table 4: Mean cosine similarity between different embeddings
in a mixture and standard deviation over the trial examples (i.e.
not model standard deviation). Similarities are ordered such
that the higher score always is assigned to the first speaker.

Student (on y) Teacher

Teacher d̂1 d̂2 d1 d2 dy

d1 .67 ± .09 .19 ± .22 1 -.09 ± .12 .78 ± .14
d2 .13 ± .19 .40 ± .18 -.09 ± .12 1 .22 ± .18

Table 5: EER (per spk) on the different SSLR trial sets for vary-
ing maximal segment lengths. * marks multi-channel models.

Model s vs. m m vs. m

10 s 5 s 2 s 10 s 5 s 2 s

MVDR+x-vector * [16] 10.8 12.7 20.4 12.2 14.3 21.7
Hybrid Model* [16] 6.4 10.2 18.4 6.3 10.8 19.3

Proposed 8.4 9.1 14.2 10.9 11.7 18.2

4.6. Evaluation on AMI re-recordings

Finally, the teacher-student model is evaluated on the AMI
re-recordings from the SSLR dataset [31]. Here, the trial
sets for multi-speaker verification consist of all possible pair-
wise segment combinations per room. Table 5 shows that our
proposed single-channel system consistently outperforms the
multi-channel baseline from [16], which is a multi-channel sys-
tem consisting of an MVDR beamformer and an x-vector em-
bedding extractor, in the s vs. m scenario, and in some cases
also the hybrid model proposed in [16]. This effect becomes
more pronounced for shorter segment lengths and can also be
seen in the m vs. m scenario. For longer segments, the direc-
tion of arrival information used in [16] proves to be effective.
Also noteworthy is that the SSLR dataset only contains 286
two-speaker segments in total, so more similar evaluation data
may be necessary to solidify the results for the m vs. m sce-
nario. Nevertheless, the results so far show that the proposed
model achieves very good performance in the s vs. m scenario
on realistic monoaural speech data without any finetuning.

5. Conclusions
In this work, we proposed a system for speaker embeddings
extraction from speech mixtures. Using an embedding space
defined by the teacher, a student embeddings extractor is learnt
to cast a mixture input to embeddings in that space, represent-
ing the speakers present in the mixture. Thus, speakers that
have previously been active in some speech segments as the sole
speaker, can be tested for their presence or absence in a mixture.
The (re-)identification even works, however less reliably, if the
speaker has never been active alone before. On re-recordings
of the AMI dataset the proposed approach is able to outperform
a multi-channel approach without additional finetuning, at least
for short segments. As future work, we are planning to use the
proposed multi-speaker embedding extractor to derive a speaker
diarization system.
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