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Abstract
Passing noise through a binary mask representing speech leads
to remarkably intelligible speech. However, if the mask input is
a competing speech signal, both the competing speech and the
target speech represented by the mask are rendered unintelligi-
ble. The current study considers potential explanations for this
abrupt breakdown. Competing speech was modified to reduce
the influence of properties that may have interacted adversely
with those of the target, including speaker, language, F0 and
spectral detail. Properties were modified by noise-vocoding, en-
velope substitution and preservation of temporal modulations.
The outcome of a listening experiment indicated that the im-
pact of competing speech is largely due to conflicting formant-
scale spectral detail and the absence of sufficient energy in spe-
cific temporal epochs, while conflicting F0 plays no role. These
findings contribute to a broader understanding of the minimal
representational basis that underlies speech perception.
Index Terms: speech perception, intelligibility

1. Introduction
Much has been learnt about speech perception over the last cen-
tury through the deployment of acoustic signals that bear some
relationship to speech, but which have been modified or dis-
torted [1, 2, 3, 4, 5, 6, 7]. Recently, attention has been focused
on processes that result in sparse representations of the spectro-
temporal energy pattern of speech, following the finding that
high levels of intelligibility can be obtained when a significant
fraction of time-frequency regions are missing [8, 9, 10, 11].

One extreme hypothesis is that speech might be encodable
solely by a spectro-temporal pattern of ones and zeros – a bi-
nary time-frequency mask. The binary masking concept was
developed primarily to allow robust automatic speech recognis-
ers to operate in the face of missing data [12], but in its ex-
treme form it is the mask itself that constitutes the entire in-
formation about the speech signal available to listeners. One
study [13] tested the hypothesis that the mask alone is all that is
required to support speech perception by processing a speech-
shaped noise signal through a binary mask. The synthesis pro-
cedure involved passing the noise through a filterbank, switch-
ing the noise on and off in each channel corresponding to the
locations of ones in the mask, and summing the resulting fil-
tered/gated signals. Using a 32-channel gammatone filterbank,
listeners in [13] identified simple Danish sentences with a fixed
syntactic structure at levels close to ceiling. A later study [14]
replaced the speech-shape noise signal with cafeteria or factory
noise, with similar findings. These studies provided an initial
indication that a binary mask pattern alone may be sufficient to
represent an intelligible speech signal.

However, a subsequent study [15] (see also dataset [16])

demonstrated that achieving a high level of intelligibility from
a binary mask depends critically on the signal that is passed
through the filterbank. That study referred to the signals pro-
cessed by the filterbank as substrates, and the resulting output
as sculpted speech, terms we will also adopt in the rest of this
paper. Using somewhat more complex sentences than those em-
ployed by [13], the study in [15] found that sculpting speech
using speech-shaped noise substrates led to listeners recognis-
ing around 4 words in every 5 correctly, relative to using the
target speech signal as the substrate (note that since mask spar-
sity generally leads to some errors, using the target speech as
the substrate signal represents ceiling performance for a given
mask). Listeners identified 3 in 5 words when the substrate was
a wide-spectrum music signal. However, the most intriguing
finding in [15] was that using a different speech signal as the
substrate led to a complete breakdown in intelligibility. These
outcomes indicate that when the binary mask is held constant,
intelligibility of sculpted speech depends on the nature of the
substrate.

Why passing a ‘competing’ speech signal through a binary
mask representing the target speech signal should destroy the
target so effectively is not known. Possible hypotheses include:

H1. Linguistic patterning or speaker idiosyncracies. English
sentences were used in [15] for the substrate speech, while the
target sentences were Spanish. Conflicting linguistic pattern-
ing in the English sentences (e.g. stress-timed rhythm, different
vowel space) may have led to insufficient Spanish-like structure
available in the substrate to support correct perception of the tar-
get sentences. Although the substrate and target speakers were
of the same gender, other talker differences (e.g. in F0 range
or speech rate) may also have contributed to the unsuitability of
the substrate.

H2. Temporal modulations. Unlike speech-shaped noise, com-
peting speech has a time-varying temporal envelope, reflecting
syllable-related energy variations in the speech signal. In gen-
eral, these modulations will conflict with those of the target sen-
tence as represented by the mask.

H3. Formant structure. The formant structure of the speech sub-
strate will typically be in moment-by-moment conflict with the
corresponding structure in the target.

H4. Fundamental frequency (F0). Similarly, the F0 contours of
the substrate and target may also interact.

H5. Insufficient spectro-temporal energy. While the mask indi-
cates where in time and frequency the target speech should be
synthesised, there may be too little energy in the speech sub-
strate at those points.

The current study explores these hypotheses. Concerning
H1, the same talker speaking the same language was used for
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both the target sentences and the substrate speech. To address
H2-H5 the speech substrate was altered to make it less speech-
like, and the effect of the consequent modifications on intelligi-
bility was assessed in a listening experiment.

2. Methods
2.1. Sculpting procedure

Generation of sculpted speech requires a mask and a sculpting
signal. The first step in producing the mask is to compute, in-
dependently, auditory spectrograms for the target speech signal
and a speech-shaped noise masker, after normalising the noise
to produce a specific signal-to-noise ratio (SNR). Here, 0 dB
SNR was used; this value is not critical, as the goal is simply to
produce a mask pattern that is broadly representative of the ut-
terance and that leads to high intelligibility when sculpted using
a noise substrate. Auditory spectrograms are log-transformed,
10 ms downsampled Hilbert envelopes at the output of a 55-
channel gammatone filterbank with centre frequencies in the
range 50-7500 Hz (see examples in figs. 1 and 2). A binary
mask is then formed by setting each time-frequency cell to 1
if the auditory spectrogram for the speech exceeds that of the
masker in the corresponding cell, and 0 otherwise.

To produce sculpted speech, the substrate signal is pro-
cessed by the same gammatone filterbank. The output of each
filter is weighted by a 20 ms triangular filter centred on each
time frame where there is a 1 in the mask in the corresponding
frequency band. For frames with a 0 in the mask, the filter out-
put is set to zero. The outputs of all frequency bands processed
in this manner are then summed. To remove phase artefacts
caused by the group delay function of the filterbank, the output
signal is reversed, refiltered, then reversed again.

2.2. Experimental conditions

Eight types of substrate were tested in the current study (Tab. 1).
Substrates were derived from Spanish sentences produced by
the male talker of the Sharvard Corpus [17]. All sentences were
sampled at 16 kHz.

Table 1: Substrates used in the current study.

Substrate Hypothesis
SSN speech-shaped noise baseline

SPEECH unmodified competing speech H1
SMN speech-modulated noise H2
NV 5 5-channel noise-vocoded H3

NV 15 15-channel noise-vocoded H3, H4
NV 30 30 channel noise-vocoded H4

ENV SPEECH envelope from speech H5
ENV SSN envelope from noise H5

The SSN condition replicates the equivalent speech-shaped
noise condition of [15] and serves as a baseline for comparison.
The SSN condition was generated by passing uniform random
noise through a filter representing the steady-state spectrum of
the male Sharvard talker.

The SPEECH condition is similar to the competing speech
case of [15] but differs in that here, speech comes from same
talker/language as the target speech. We hypothesise [H1] that
if language and/or talker differences are responsible for intel-
ligibility breakdown, scores in the SPEECH condition will be
higher than in the corresponding condition of [15].

To test the hypothesis [H2] that temporal modulations in the
competing speech are responsible for the intelligibility break-

down, a speech modulated noise (SMN) condition was generated
by replacing the envelope of speech-shaped noise by the short-
term envelope of the competing speech. We predict scores in
the SMN condition will be similar to those in the SPEECH con-
dition if modulations of the substrate interfere with perception
of the target speech.

To elucidate any role for formant and harmonic structure, a
number of noise vocoding conditions were constructed. Noise
vocoding [2] involves filtering speech into a number of con-
tiguous bands, then replacing the temporal fine structure at the
output of each band with a random noise signal. The amount of
spectral detail available is governed by the number and place-
ment of frequency bands. Here, in the NV 5 condition, 5 log-
spaced bands in the range 50-7500 Hz were used, while the NV
15 and NV 30 conditions employed 15 or 30 bands in the same
frequency range. Formant structure is weak in the NV 5 condi-
tion, but well represented in the NV 15 and NV 30 conditions;
harmonic structure is not present in NV 5, weak in NV 15, but
strong in NV 30. These properties are illustrated in Fig. 1. If
the formant structure of the substrate interferes with correct re-
ception of the target [H3], we predict lower scores in the NV
15 condition compared to NV 5. Similar considerations for
harmonic structure [H4] result from a comparison of the NV
15 and NV 30 substrates.

NV 5

NV 15

NV 30

Figure 1: Auditory spectrograms for the 3 noise-vocoded con-
ditions. The sentence is ‘El tronco del árbol cayó de golpe en
la calle [‘The tree trunk fell suddenly in the street’].

The final two conditions address the hypothesis [H5] that
there is insufficient energy in the substrate in some spectro-
temporal regions of the mask i.e., there is no material to sculpt
out the relevant acoustic features. For these conditions the
sculpting procedure described in Sec. 2.1 was modified to ap-
ply a weighting to each spectro-temporal region. In the ENV
SSN condition, the sculpting signal was SPEECH, but the en-
ergy came from the speech-shaped noise signal in that region;
conversely, the ENV SPEECH case was a speech-shaped noise
signal with energies replaced by those of the SPEECH signal. In
essence, the temporal fine structure of the speech substrate is re-
tained in the ENV SSN condition, while the envelope is retained
in the ENV SPEECH case (see [18] for a review of envelope and
fine structure cues in speech perception). The ENV SSN con-
dition ensures that there is some energy in all spectro-temporal
regions where the mask is present; consequently, a finding that
intelligibility for ENV SSN improves significantly compared to
the SPEECH substrate would point to the importance of this fac-
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tor. Likewise, any significant reduction in intelligibility com-
pared to SSN in the ENV SPEECH condition would reinforce the
importance of having sufficient energy in the masked regions.

SPEECH NV 30

ENV SPEECH NV 15

ENV SSN NV 5

SSN SMN

Figure 2: Example auditory spectrograms for speech sculpted
using the substrates of the current study. The sentence fragment
is ‘limpiar las botas’ [‘clean the boots’].

Fig. 2 shows spectrographic examples of each form of
sculpted speech. Spectrograms appear broadly similar because
the mask involved in their production was identical in each
case. However, there are subtle yet discernible differences due
to the differing substrates. For example, the SPEECH and ENV
SPEECH conditions have a similar spectro-temporal energy pat-
tern by design, but the harmonic structure in the SPEECH case
is stronger since the ENV SPEECH substrate is derived from a
noise signal. The converse is the case for the SSN and ENV
SSN pair. The SMN case shows a different energy distribution
across time than its SSN counterpart, reflecting the temporal en-
ergy distribution of the SPEECH substrate. The differences are
clearest in the final part of the spectrogram where a weaker sig-
nal is evident in the SMN case. The harmonic pattern in the
noise-vocoded cases approximates that of the SPEECH substrate
as the number of channels increases from 5 to 30.

2.3. Stimuli

Stimuli were constructed from 240 utterances (sentences 461-
700) of the Sharvard Corpus in each of the 8 sculpted speech
conditions. Sentences were normalised to the same root-mean-
square level prior to presentation.

2.4. Participants

A total of 36 participants (33 female; mean age 19.1, range 18–
24, st. dev. 1.25 years) took part in the listening experiment.
All were students in their second year of study at the Univer-
sity of the Basque Country (Alava Campus, Spain). No listener
reported hearing impairment, and all had Spanish or Spanish
and Basque as their first language(s). All listeners were paid for
participation.

2.5. Procedure

Listeners responded to 30 sentences in each of 8 conditions. No
sentences were repeated. Condition order was balanced across
listeners following a Latin square design. Sentence order in
each condition block was randomised. The experiment took
place using an online platform described in [19], implemented
using Flask [20] and Howler [21]. That study validated the on-
line approach via a series of experimental replications of tradi-
tional lab experiments, one of which was a replication of the
sculpted speech study [15]. All listeners were familiar with the
online platform as they had been using it extensively for classes
in English Phonetics prior to the experiment. Listeners heard
5 practice sentences chosen from a subset of experimental con-
ditions prior to the main experiment. Listeners completed the
experiment one block at a time, and were able to take a break
between blocks.

2.6. Postprocessing

As part of the design of the Sharvard Corpus, five keywords in
each sentence were preselected for scoring purposes. Scores
were based on the number of such keywords identified cor-
rectly, producing an integer value in the range 0-5. Prior to
scoring, participants’ responses were subjected to the follow-
ing set of normalising processes: (i) vowel stresses were re-
moved, since participants were told that indicating stress was
optional; (ii) all non-alphanumeric characters were removed;
(iii) all numbers represented with characters in the range 0-
9 were replaced by lexical equivalents (e.g. 10 was replaced
by ‘diez’); (iv) any extraneous digits were then removed; (v)
common typos/orthographic errors from a list of 80 such errors
identified in prior experiments were replaced (e.g. the non-word
‘silvar’ was replaced by its homophone ‘silbar’ [‘to whistle’]).

Outlier analysis (based on identifying values more than 1.5
times the inter-quartile range below the first quartile or above
the third quartile) performed on mean per-subject scores across
all conditions led to the removal of data from one participant
(mean 5% versus cohort mean of 36% keywords correct). Sub-
sequent analysis was based on the remaining 35 participants.

3. Results
Fig. 3 depicts the key outcomes of the listening experiment.
Scores in the SPEECH and SSN conditions were compared to
those obtained in the online replication [19] of the earlier
sculpted speech study [15] in which listeners identified 3.3%
and 69.0% of keywords in the SPEECH and SSN conditions re-
spectively. Due to lack of normality, Mann-Whitney rank-sum
tests were used to compare scores for the SSN and SPEECH sub-
strates in the two studies. These tests indicated that while the
SSN conditions were not statistically-different [U = 863, p =
0.71], the SPEECH substrates were [U = 370, p < .001]. Since
the SSN substrate conditions were identical in the two studies,
the similarity in keyword scores provides some confidence that
the samples in the two studies are comparable. The difference
between the studies for the SPEECH condition may stem from
the fact that the competing speech substrates differed in talker
and language (Hypothesis H1; see Discussion).

A generalised linear mixed-effects model, implemented us-
ing the glmer function of the lme4 package [22] in R [23] was
used to predict the proportion of keywords recognised correctly.
This model had SUBSTRATE as a fixed effect, with random in-
tercepts and per-substrate slopes for each participant, and ran-
dom intercepts for each sentence. Model comparisons using the
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Figure 3: Keyword scores for target sentences sculpted from
the eight substrates of the experiment. Notches in the boxplots
indicate 95% confidence intervals. Grey boxes denote baseline
conditions. Mean scores are indicated in the right hand column.

Anova function from the car package [24] confirmed a clear
main effect of substrate [χ2(7) = 1453, p < .001] that is ev-
ident in Fig. 3. Post-hoc analyses made use of the emmeans
function from the package of the same name [25], using Tukey
HSD corrections for multiple comparisons. This analysis indi-
cated that keyword recognition rates were different for all but
three pairs of substrates at the p < .001 level, while two pairs
– ENV SSN vs. SMN and ENV SPEECH vs. NV 30 – differed at
the p < .05 level. The only pair that did not differ statistically
were two of the noise-vocoded conditions, viz. NV 15 and NV
30 [p = .89].

4. Discussion
In terms of the hypotheses, the above findings suggest the fol-
lowing:

H1. Linguistic patterning or speaker idiosyncracies. The fact
that scores in the SPEECH condition were higher in the cur-
rent study, which used the same talker and language as the tar-
get speech material, than in [19] which used a different lan-
guage and talker, suggests that language and/or talker differ-
ences (which cannot be pulled apart here) may be responsible
for part of the intelligibility breakdown. However, the differ-
ence of less than 3 percentage points in the SPEECH condition
is modest.

H2. Temporal modulations. Processing the speech substrate to
leave just its temporal modulation envelope intact (SMN) is able
to restore most, but not all, of the intelligibility of the target sen-
tence, arguing against such modulations being the main factor
behind intelligibility breakdown in the SPEECH condition.

H3. Formant structure. Intelligibility dropped by 12 points as
the number of bands in the noise vocoder increased from 5 to 15,
supporting the hypothesis that information in the formant struc-
ture of the substrate interferes with target processing. Indeed,
the 18 point reduction in keyword scores from the SMN condi-
tion to the NV 5 condition also supports this conjecture.

H4. Fundamental frequency (F0). The lack of a statistically-
significant score difference between the NV 15 and NV 30 sub-
strates indicates that harmonic structure differences between
substrate and target play little if any role in the intelligibility
breakdown of the latter.

H5. Insufficient spectro-temporal energy. When the spectro-
temporal energy balance of the competing speech was altered
to ensure sufficient energy in all parts of the mask (ENV SSN),
keyword scores improved by around 45 points, providing a
strong indication that lack of energy in the necessary places
contributed to intelligibility breakdown, a finding reinforced by
the drop of 49 points when a speech-shaped noise envelope was
replaced by that of the speech (ENV SPEECH condition).

One limitation of the current study is that acoustic proper-
ties related to one or other of the hypotheses cannot always be
modified in a way that is completely independent of changes
to other acoustic properties. For example, the temporal energy
modulations inherent in the SMN condition also impact the de-
tailed spectro-temporal energy balance that is the subject of the
ENV SPEECH and ENV SSN conditions. For this reason any
conclusions about why a speech substrate has a negative im-
pact when used to sculpt a different target speech signal must be
regarded as tentative. Notwithstanding such limitations, when
taken together the outcomes of the current study suggest that
two factors – loss of spectral detail, and temporal energy redis-
tribution – play a role in the impact that a speech substrate has
on the sculpted target signal.

The role played by the first of these factors i.e. the amount
of spectral detail available in the substrate, is evidenced by the
recovery of intelligibility as spectral detail is progressively re-
moved, from fully-present in the SPEECH condition, to partially-
present in the NV 30, NV 15 and NV 5 cases, to fully lost in the
SMN condition. While the noise-vocoding and SMN progres-
sion effectively broadens or fills in the spectral distribution of
the substrate, it maintains the original temporal distribution of
energy in the substrate. This property may be responsible for
the finding that even in the SMN condition there is not full re-
covery of intelligibility (scores in the SMN condition fall short
of those in the SSN condition by 13 points). Consequently, it
appears that in addition to a blurring of spectral detail it is nec-
essary to ensure that there is sufficient substrate energy in the
appropriate temporal zones to ‘activate’ the target speech as rep-
resented by the mask, as accomplished by the temporal redistri-
bution of substrate energy that is a consequence of conditions
ENV SPEECH and ENV SSN.

5. Conclusions

When a competing speech signal is passed through a binary
mask representing a different speech target, the intelligibility
of both competing and target speech is largely destroyed. The
current study suggests that intelligibility breakdown stems from
a combination of conflicting spectral detail and insufficient en-
ergy at critical temporal epochs in the competing speech.
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