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Abstract

Deep learning models have shown state-of-the-art results in
speech enhancement. However, deploying such models on an
eight-bit integer-only device is challenging. In this work, we an-
alyze the gaps in deploying a vanilla quantization-aware train-
ing method for speech enhancement, revealing two significant
observations. First, quantization mainly affects signals with
a high input Signal-to-Noise Ratio (SNR). Second, quantizing
the model’s input and output shows major performance degra-
dation. Based on our analysis, we propose Fully Quantized
Speech Enhancement (FQSE), a new quantization-aware train-
ing method that closes these gaps and enables eight-bit integer-
only quantization. FQSE introduces data augmentation to miti-
gate the quantization effect on high SNR. Additionally, we add
an input splitter and a residual quantization block to the model
to overcome the error of the input-output quantization. We show
that FQSE closes the performance gaps induced by eight-bit
quantization.

Index Terms: Speech Enhancement, Quantization, CNN

1. Introduction

Deep learning models have shown state-of-the-art results on
many audio tasks such as source separation [1, 2, 3, 4, 5], speech
enhancement [6] and speech recognition [7]. Nevertheless, de-
ploying such models on efficient edge or mobile devices is chal-
lenging due to memory and computational complexity limita-
tions. One direction to address these problems is quantization
[8] which reduces models’ memory and computational com-
plexity. Due to the success of quantization in Computer Vision
[9, 10], there are attempts to apply quantization to several audio
tasks, such as speech recognition [11] and enhancement [12].
However, providing a fully quantized model is still challeng-
ing when both activations and weights have low precision (i.e.
eight-bit or below). A recent work [13] in this direction uses
quantization with a mixed precision that includes high preci-
sion bit-width (i.e. above eight-bit). Another method [14] uses
clustering quantization which only reduces the model size. Still,
efficient deployment of such models on embedded and mobile
devices remains challenging.

In this work, we suggest a Quantization-Aware Training
(QAT) [8] method for speech enhancement models that enables
a fully eight-bit quantized model, where the weights and acti-
vations of every operation are quantized. To achieve this, we
first analyze the performance of a vanilla eight-bit QAT [15].
This analysis shows that speech enhancement quantized mod-
els are highly sensitive to input SNR. In addition, it reveals a
high sensitivity to activation quantization, especially for the in-
put and output signals. Based on this analysis, we introduce a
new QAT method for speech enhancement models. We call our
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method Fully Quantized Speech Enhancement (FQSE). FQSE
is based on LSQ [9], which enables learning the quantizer step
size. In addition, we combine FQSE with a new data augmenta-
tion method that considers high SNR levels to reduce the quan-
tization error in these SNRs. Finally, to cope with the sensi-
tivities of the input and output quantization, we introduce two
modifications to the trained model: i) splitting a single speech
channel with high precision into a pair of low-precision chan-
nels; ii) adding a residual quantization block, which produces
an additional output to the model that extracts the output quan-
tization error. The suggested modifications require adding pre
and post processing stages with a small computational cost. We
present several experiments on Conv-TasNet [1] model to show
the effectiveness of FQSE on speech enhancement. Moreover,
we validate our approach across several input SNRs to present
its performance when facing high SNR levels. Our contribu-
tions are summarized as follows:

* We analyze a fully quantized speech enhancement neural net-
work and show its sensitivity to high input SNR and input-
output quantization.

* We introduce a Refined Quantization-aware training Strategy
(RQS) that enables a fully eight-bit quantization of speech
enhancement models.

e We suggest an Input Splitter and a Residual Quantization
Block (RQB), which are added to a pre-trained model and
enable input-output quantization.

For reproducible research, we share the code here [16].

2. Background

Here, we provide a short overview of QAT [8, 9, 15]. QAT is a
crucial method for enabling the deployment of neural networks
on embedded devices. Most QAT methods begin with a pre-
trained neural network and add weights and activations quan-
tizers. Then, retraining the network to correct the quantization-
induced errors. In this work, we use uniform quantization
with asymmetric and symmetric thresholds for activation and
weights, respectively. A uniform quantizer is defined as fol-
lows: let z € R™ be a vector to be quantized, A € R¥ is the
quantizer step-size, z € R is the zero-point and b is the bit-
width, then the uniform quantization function is defined as:

—z

Q(z) éAﬁlip({wT—‘ 0,20 — 1) Yz )

where clip (¢, a,b) £ min (max (x,a),b) denotes the clip-
ping of @ between a, b, and |z] : R — Z denotes the rounding

of x to the nearest integer value. In case of asymmetric thresh-

__ max(ax)—min(a)
olds, we set A = =——7———

(signed) symmetric quantizer z = —t and A = 2%1, where

and z = min (x) whereas in
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Figure 1: Analysis of a fully eight-bit quantized Conv-TasNet [1] model. (a) presents the SI-SNR of the float model vs. eight-bit vanilla
quantized model for different input SNR levels. (b) SNR histogram of the LibriMix [17] test set. (c) shows the effect of input-output

precision on the SI-SNR.

= max (|x]) is the threshold value. Retraining a quantized
neural network is challenging due to the rounding operation in
(1), which is non-differentiable. There are several approaches in
the literature to overcome this problem. Here we use one of the
simplest approaches, a Straight-Through Estimator (STE) [18],
which approximates the gradient of the rounding operation as
one, namely %z] =
3. Analysis of Quantization Error

We analyze the effect of QAT on the speech enhancement task.
In this analysis, we perform a vanilla QAT [15] on the Conv-
TasNet [1] model while using the LibriMix [17] dataset. Un-
less stated otherwise, the model is fully quantized with eight-bit
quantization for both weights and activations. The implementa-
tion details are described in Section 5.1.

In real-world scenarios, speech quality may vary. It can
be much noisier or cleaner. One would expect the enhance-
ment model to produce clean speech, especially when the in-
puts are cleaner (high SNR). We believe that quantization noise
becomes dominant and its effect is much stronger in such cases.
To illustrate the effect of different input SNR levels, we arti-
ficially scale the input noises in the entire test set of LibriMix
to get the desired SNR. Then, we compute the average Scale-
Invariant Signal-to-Noise Ratio (SI-SNR) [19] over the entire
noise-scaled test set. Assume that for each sample in the dataset,
we have the clean speech signal « and its noisy version &. Us-
ing both signals, we generate a noisy measurement ¥ as follows:

(@)

y=x+an,

FRNTSE

where « = 4 /10~ 10 is the noise scale factor,n = x—x

l[nll3
is the orignal noise and f is the desired SNR in Decibel. We
repeat this procedure with multiple SNR levels (3) between
—6dB to 18dB at 1dB step and report the results in Figure 1a.
Note that this range has been selected to cover input SNR vari-
ations based on the histogram (Figure 1b) of the original Lib-
riMix test set. Figure la shows that the vanilla QAT perfor-
mance degrades in high input SNRs, resulting in a wider gap
between the float and the quantized model, whereas in low input
SNRs, the gap is smaller. This emphasizes the model’s sensitiv-
ity to quantization in high input SNRs.

Next, we investigate what causes the increased sensitivity
to high input SNRs. First, we run the same experiment but only
quantize the activations or weights. This experiment (Figure 1a)
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shows that the performance degradation results from quantiz-
ing the activations. To investigate this further, we perform an
additional experiment where both weights and activations are
quantized, but the input and output tensors are kept at high pre-
cision (16-bit). Figure 1c shows significant sensitivity to input
and output quantization and that both quantizations contribute
to performance degradation.

4. Method

We suggest Fully Quantized Speech Enhancement (FQSE), a
method to obtain a fully quantized neural network for speech
enhancement, in which all model weights and activations are
quantized with low precision eight-bit. Based on our analysis
in Section 3, we derive a QAT method that consists of three
parts: 1) a Refined QAT Strategy (RQS), which applies data
augmentation to correct the imbalanced dataset and takes into
account the quantization sensitivity to high SNRs; 2) an input
correction step that splits a single high-precision channel into
a pair of low-precision channels; 3) a Residual Quantization
Block (RQB) which outputs the residual quantization error that
is later combined into a high-precision output. Our approach is
illustrated in Figure 2. We describe RQS in Section 4.1 and the
modification to the input and output signals in Sections 4.2 and
4.3, respectively.

4.1. Refined QAT Strategy

Here, we suggest a Refined QAT Strategy (RQS) based on
learned step size quantization (LSQ) [9]. Adding LSQ to vanilla
QAT allows us to consider activation quantization error by
learning the quantizer step size using gradients of the task loss.
We address the imbalanced SNR distribution of the training set
(Figure 1b) and put more attention on high SNR samples during
training. This is achieved by an SNR augmentation method. We
randomly select an SNR value for each sample at every batch
and then rescale the sample noise as described in Equation (2).
During the retraining process, we sample the SNR uniformly
between —6d B to 18dB.

4.2. Input Splitter

A quantization of input speech into low precision degrades the
performance of speech enhancement models (Figure 1c). In
order to keep high precision in the input, we use two signals
of eight-bit instead of one signal of 16-bit. This is achieved
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Figure 2: FOQSE scheme. The pre-processing stage is an Input Audio Splitter (SPT) that splits a high-precision signal into two signals.
The model, which consists of Encoder-Decoder architecture with the new Residual Quantization Block (RQOB) is then fully quantized to
low precision. The post-processing stage combines two low-precision outputs into a single high-precision output.

by splitting the input in the pre-processing stage from a single
channel into a pair of channels using a simple bit-splitting tech-
nique.

The splitting is done in an orderly fashion from the most
significant bit to the least significant bit, where each split takes
eight consecutive bits. We implement this bit-splitting with
a symmetric floor quantizer. Specifically, the low-precision
speech is given by:

Q 7b7t
(@) ] 3)

X = {QF(A(bzt) tbi,t)

where Qr is a symmetric floor quantizer. In Equation (3) the
residual error is € £ & — Qr (, by, t) and the symmetric floor
quantizer is given by:

QF ('T7bl’t)é
AT T _ob—1 ob—1
A (b, t) - clip ({ﬁ (bz,t)J ,—2 ,2 1) ,

where |z] : R — Z denotes the floor of z to the lowest in-
teger value. In order to restrict the residual error in the same
range [—t,t) as Qr (x, by, t), we scale it by N b a6, and sub-
tract t. This way, X remains with per tensor quantlzation. In
this work, we denote the bit-width of a low precision tensor as
b; = 8 and high precision tensor as b, = 16. This split requires
changing the first linear operation (Figure 2, Encoder) weights
to two channels (instead of one channel) same as the input. We
initialize the new weights as follows: the first channel consists
of the original weights, whereas the second channel is sampled
from Gaussian distribution with mean and variance equal to the
original weights.

4.3. Residual Quantization Block

Based on the analysis in Section 3, we have shown that low pre-
cision output (eight-bit) degrades the performance of a speech
enhancement model (Figure 1c). We address this issue by
proposing a Residual Quantization Block (RQB) as shown in
Figure 2. The RQB extracts the quantization residual error by
using the encoder-decoder structure which is common in many
speech enhancement networks [5]. We use the feature space to
compute the quantization residual error in low precision, which
is feasible thanks to the increased number of channels. Specifi-
cally, let Y; € RX" Y, € R be the decoder’s quantized
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input and output tensors, respectively, where d is the number of
channels and n is the number of time domain samples. Then,
the RQB output is given by:

Yi=Q(WgY,), (4a)
U=0(Y.-Yi), (4b)
= Q (Wf)U) ) (40)

where Wg € R™! and W € R' are the quantized
weights of RQB’s encoder and decoder, respectively. The RQB
first projects the output of the quantized model into the feature
space in Equation (4a). Then, RQB computes the quantization
residual error in Equation (4b). Finally, the error is projected
back into the time domain in Equation (4c). Note that RQB is
also fully quantized as shown in Equation (4). We initialize the
RQB encoder-decoder block using the parameters of the pre-
trained model and then learn them during the QAT optimization
process. Finally, in the post-processing stage, we reconstruct
the high-precision output by y = Q (Y,) +

_€e
PYTE

5. Experimental Results
5.1. Implementation Details

Training. We use the LibriMix [17] dataset for retrain-
ing and testing our method. The LibriMix dataset is derived
from LibriSpeech [20] signals (clean subset), and WHAM [21]
noises. It consists of three splits: train, dev, and test. Each split
contains short mixed/noisy audios of 16-bit samples. For train-
ing, we use the train split (train-360), which contains 50,800
samples. In this work, we use the LibriMix dataset with a sam-
ple rate of 16kHz and the shortest waveform length between the
noisy and clean signals. We evaluated FQSE on Conv-TasNet
[1], which is a convolution-based neural network (CNN). We
begin with pre-trained float weights taken from [22]. We quan-
tize the model for eight-bit integer-only, with per-tensor and
per-channel thresholds for activations and weights, respectively.
The optimization process minimizes negative SI-SNR [19] for
80 epochs using Adam [23] optimizer with a learning rate
of 1073, Each epoch takes approximately 45 minutes on an
NVIDIA DGX station with four NVIDIA V100 32GB GPUs
and a batch size of 6.

Evaluation. = We use the LibriMix test split, which contains
3000 samples. For evaluating our method we use the following



Table 1: Comparing between float and eight-bit quantized models on LibriMix [17] test set using Conv-TasNet [1]. For the SI-SNR
metric, there are also results for SNR per range. GigaBit Operations (GBOP) is for a 3-second segment.

Model Size

SI-SNR[dB] SDR

Precision [MB] GBOP — " SNR  MidSNR HighSNR ANSNR  [dB] 1O
Float 20.1 329.12 12.50 15.72 19.08 14.74 15.30 0.9311
Vanilla QAT 5.15 20.57 12.26 15.38 18.45 14.42 1494  0.9253
FQSE(Ours) 5.20 23.72 12.57 15.74 19.02 14.77 1526  0.9294
Table 2: Comparing Splitter (SPT) and Combiner (RQB) to low 241
precision using LibriMix [17] test set. ---- Float
224 —— FQSE /
Input  Output SI-SNR[dB] . 5o || T FQSE (wio SPT and RQB) /
Precision  Precision o 20 FQSE (w/o RSQ)
eeisio eSO Low SNR  Mid SNR  High SNR 2 | — Vanilla QAT
8bit 16bit 12.46 15.69 18.99 t%
SPT 16bit 12.56 15.78 19.14 n 167
16bit 8bit 12.46 15.66 18.93 é 1]
16bit RQB 12.47 15.67 19.38 5
o 124
10
metrics': SI-SNR, Signal-to-Distortion Ratio (SDR) [19] and
Short-Time Objective Intelligibility measure (STOI) [25]. We A ; " -

present results on different input SNR levels to show that the
suggested approach reduces the sensitivity of eight-bit quanti-
zation. This is achieved by splitting the LibriMix test set into
three ranges: low, mid, and high, which are below 2dB, between
2dB to 10dB, and above 10dB, respectively. Also, we add re-
sults using the original LibriMix test set.

5.2. Results

We begin with an ablation study to show the benefit of our
method. First, we present the improvement of each compo-
nent of FQSE on several SNR levels as in Section 3. Then,
in Figure 3 we present the results of vanilla QAT, float, FQSE,
FQSE (w/o RQS), and FQSE (w/o SPT and RQB). We observe
that all FQSE components are required to reach the float model
performance. In addition, it shows an improvement across a
wide range of SNR levels and in particular high SNRs where
we reach an improvement of 2dB compared to vanilla QAT. We
also conduct experiments to quantify the benefit of the splitter
and RQB. Table 2 shows the effectiveness of both the splitter
and RQB for keeping high precision in the input and output,
respectively.

Finally, in Table 1 we present the results of quantized Conv-
TasNet [1] on the entire LibriMix [17] test set. We show that
FQSE, which is fully quantized, has a similar performance to
the float model while reducing the model size by a factor of four
and the computation complexity is ~15% bigger than vanilla
QAT.

6. Conclusions

In this work, we present a QAT method for speech enhancement
models with eight-bit integer-only efficient inference called
FQSE. Our performance analysis shows sensitivities to inputs
with high SNR as well as quantization of the model’s input and
output. We address these sensitivities by suggesting an SNR
data augmentation and adjustment to the input and output of
the quantized model. We present an ablation study showing the

'We use TorchMetrics [24] for the metrics implementation.
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5
Input SNR[dB]

Figure 3: SI-SNR comparison between vanilla QAT and FQSE
with eight-bit quantization for different input SNRs. FQSE
reaches the float model across all input SNRs. FOSE w/o RSQ
and FQSE w/o the splitter (SPT) and RQB show the need for
both techniques.

contribution of each component of FQSE and the results on an
eight-bit integer-only model. This is the first step towards eight-
bit integer-only quantization, and several questions still remain
open: i) can this method be generalized to other tasks and archi-
tectures?; ii) how to obtain an integer-only post-training quanti-
zation method?
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