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Abstract
The over-smoothing problem in the middle- and high-frequency
areas prevents the acoustic model from generating high-quality
singing voices. In this paper, we propose XiaoiceSing2, which
is a generative adversarial network consisting of a FastSpeech-
based generator and a multi-band discriminator, to generate the
full-band mel-spectrogram. Specifically, we improve the feed-
forward Transformer (FFT) block by adding multiple residual
convolutional blocks in parallel with the self-attention block to
balance the local and global features. The multi-band discrim-
inator contains three sub-discriminators responsible for low-,
middle-, and high-frequency parts of the mel-spectrogram, re-
spectively. Each sub-discriminator is composed of several seg-
ment discriminators (SD) and detail discriminators (DD) to dis-
tinguish the audio from different aspects. The experiment on
our internal 48kHz singing voice dataset shows XiaoiceSing2
significantly improves the quality of the singing voice over Xi-
aoiceSing.
Index Terms: Singing voice synthesis, feed-forward trans-
former, generative adversarial network

1. Introduction
Recently neural network for singing voice synthesis [1, 2, 3, 4]
has attracted a lot of attention since deep learning has achieved
great gain in text-to-speech (TTS) task [5, 6, 7] which has a sim-
ilar pipeline to SVS. Some studies [1, 3, 8, 9, 10, 11] reported
the promising results of the proposed models on synthesizing
high-fidelity 48kHz singing voices. For instance, XiaoiceSing
[3] modified the architecture of FastSpeech [6] to adapt the task
of high-fidelity SVS and it was combined with WORLD [12]
vocoder to generate 48kHz singing voices. HifiSinger [11] uti-
lized a sub-frequency GAN in the acoustic model and a multi-
length GAN in the vocoder to better reconstruct the high-fidelity
singing voices.

However, due to no special design for generating the full-
band mel-spectrogram, these studies work not well in high-
fidelity SVS scenarios in which middle- and high-frequency
parts possess stronger emotion and expressiveness. Further, this
over-smoothing problem in the generated mel-spectrogram re-
sults in the vocoder failing to reconstruct the high-fidelity wave-
form from it owing to its low-quality [11, 13, 14].

In order to solve the over-smoothing problem of middle-
and high-frequency areas, we present a novel high-fidelity
singing voice synthesizer XiaoiceSing2 based on a genera-
tive adversarial network [15] to generate a more realistic mel-
spectrogram since GAN can theoretically approximate the real
data distribution via the adversarial training. The proposed Xi-
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aoiceSing2 is composed of a FastSpeech-based generator and
a multi-band discriminator. For the generator, we follow the
design of XiaoiceSing [3] but improve the feed-forward Trans-
former (FFT) block [16] of it by adding multiple residual con-
volutional blocks in parallel with the multi-head self-attention
(MHSA) block [17] to balance the local and global features. Be-
cause we argue that the global features generated by the MHSA
block are prone to being over-smoothing for the middle- and
high-frequency parts, which can be alleviated by introducing lo-
cal information from the multiple residual convolutional blocks.

As for the multi-band discriminator, similar to HiFiSinger
[11], it consists of three sub-discriminators responsible for low-,
middle-, and high-frequency parts of the mel-spectrogram, re-
spectively. Moreover, each sub-discriminator contains several
segment discriminators (SD) and detail discriminators (DD) for
distinguishing the mel-spectrogram from the segments with dif-
ferent window lengths and local time-frequency patterns, re-
spectively. The segment discriminators are able to cover the
different levels of long-term dependencies by applying multi-
ple windows with different lengths on the mel-spectrogram to
increase the capability of the discriminator. Similar to Patch-
GAN [18, 19, 20], the detail discriminator divides the mel-
spectrogram into multiple time-frequency patches so that it can
pay more attention to the middle- and high-frequency regions
and the generator also benefits from the stronger discriminator
to produce a more realistic mel-spectrogram.

In the experiment, XiaoiceSing2 is combined with a high-
fidelity vocoder HiFi-WaveGAN [21] which is designed to re-
construct the 48kHz waveform and the result shows Xiaoic-
eSing2 significantly improves the quality of the singing voice
over XiaoiceSing in term of mean opinion score (MOS) metric.
We also make a comparative study of the middle- and high-
frequency areas generated by XiaoiceSing2 and XiaoiceSing
via visualizing the mel-spectrogram. Besides, an ablation study
is conducted to show the contribution of the proposed compo-
nents.

The rest of this paper is organized as below. Section 2 il-
lustrates the detailed architecture of XiaoiceSing2 including the
generator and discriminator. The experimental settings includ-
ing the dataset, baseline system, and training methodology are
shown in Section 3. In addition, the MOS test result* and an
ablation study are also reported in this section. Finally, we con-
clude this paper in Section 4.

2. XiaoiceSing2
In order to generate the mel-spectrogram with more fine-grained
middle- and high-frequency parts, we adopt an adversarially
training strategy to optimize XiaoiceSing2, which is different

*Demo page: https://wavelandspeech.github.io/xiaoice2
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Figure 1: The architecture of XiaoiceSing2. (a). The improved feed-forward Transformer. (b). Feed-forward Transformer with parallel
residual convolutional block. (c). Multi-band discriminator, consisting of three sub-discriminators, and each contains several segment
discriminators and detail discriminators.

from XiaoiceSing that directly trains the feed-forward Trans-
former [16] as the acoustic model. The generator of Xiaoic-
eSing2 uses the novel ConvFFT blocks to efficiently lever-
age the local and global information as Figure 1(a) shows.
Additionally, since the generator can benefit from a power-
ful discriminator, we use three sub-discriminators to distin-
guish the low-, middle-, and high-frequency parts of the mel-
spectrogram. And each sub-discriminator employs several seg-
ment and detail discriminators to identify the mel-spectrogram
from different aspects.

2.1. Generator

The input to the generator is the musical score consisting of
lyrics, note duration sequence, and note pitch sequence. The
lyrics are converted to phoneme sequences by the grapheme-to-
phoneme (G2P) tool [22]. All sequences are transformed into
their own embedding spaces by the corresponding embedding
modules and these embedding sequences are concatenated as
shown in Figure 1(a).

As for the architecture of the generator, XiaoiceSing2 fol-
lows XiaoiceSing which is a FastSpeech-based [6] acoustic
model. The generator can be divided into an encoder, a length
regulator with a duration predictor, and a decoder as shown in
Figure 1(a). The encoder converts the concatenated sequence
into a hidden space which is considered to be shared with the
mel-spectrogram [6, 7]. Consequently, the output sequence of
the encoder can be expanded by the length regulator accord-
ing to the result of the duration predictor to directly match the
length of the target mel-spectrogram. Finally, the expanded
sequence is transformed by the decoder to predict the mel-
spectrogram, V/UV decision, and the logF0 value. Note there is
a residual connection between the input pitch sequence and the
predicted logF0 sequence to lower the training difficulty [3].

In this paper, both the encoder and decoder contain 6 Con-
vFFT blocks which are improved from the FFT block used in
[3, 6, 7]. As Figure 1(b) shows, the ConvFFT block incorpo-
rates multiple residual convolutional blocks in parallel with the
MHSA block since we believe that the over-smoothing prob-
lem of middle- and high-frequency areas is intensified if only
the global information extracted by MHSA is used. To rectify

this problem in the generated mel-spectrogram, the local infor-
mation is extracted by the stacked residual convolutional blocks
which share the same input with MHSA, then it is added to the
global information for fusion. In the encoder, each ConvFFT
block has 2 residual convolutional blocks. In the decoder, the
number is 5.

2.2. Multi-band discriminator

Because the strong discriminator is beneficial to the genera-
tor, we utilize three sub-discriminators to work on the low-,
middle-, and high-frequency parts of the mel-spectrogram as
Figure 1(c) shows. In this paper, the dimension of the mel-
spectrogram is 120 and it is divided into low-frequency (0-60),
middle-frequency (30-90), and high-frequency (60-120) parts.
Each sub-discriminator has several segment and detail discrim-
inators for identifying the mel-spectrogram from long-term de-
pendencies as well as time-frequency patterns.

2.2.1. Segment discriminator

The idea of the SD is similar to the multi-length GAN
(ML-GAN) in HiFiSinger [11]. However, instead of ap-
plying ML-GAN on the waveform, we utilize our SD for
the mel-spectrogram via randomly clipping the input mel-
spectrogram by different window lengths which are set as
[200, 400, 600, 800], and the whole segment in this paper. All
segment discriminators have the same architecture which is
a 10-layers 1-dimensional (1-d) convolutional neural network
(CNN) with 3 kernel size and 128-dimensional hidden chan-
nel. The 1-d CNN is able to promote the continuity of the
mel-spectrogram produced by the generator along the time axis
by distinguishing the long-term dependencies with different
lengths. In addition to outputting the real/fake decision, the in-
termediate feature maps generated by the hidden layers are also
collected for calculating the feature loss which is described in
Section 2.3.3.

2.2.2. Detail discriminator

Although segment discriminators promote the continuity of the
generated mel-spectrogram, they cannot benefit to generate the
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high-quality middle- and high-frequency parts which are signif-
icant to produce high-fidelity singing voices [13]. By taking this
into account, we accompany a detail discriminator for each seg-
ment discriminator. The motivation for generating more fine-
grained middle- and high-frequency areas by using the detail
discriminator comes from the PatchGAN [18, 19, 23] which
utilizes a fully convolutional discriminator for generating high-
resolution images. To be specific, the first 2-dimensional con-
volutional layer with (3, 3) kernel size upsamples the input mel-
spectrogram to 32 channels. The rest of the network consists of
5 convolutional layers with (3, 3) kernel size and (2, 2) dilation
for downsampling, and 5 convolutional layers with (1, 3) kernel
size for output. These layers are alternately stacked. The out-
puts from each output layer are collected for calculating the ad-
versarial loss. And the outputs from each downsampling layer
are collected for computing the feature loss. Due to the de-
tail discriminator, the mel-spectrogram is divided into multiple
time-frequency patches for identifying whether they are real or
fake, which is helpful to better construct the middle- and high-
frequency parts.

2.3. Loss function

The loss for XiaoiceSing2 is a weighted sum of several loss
terms, which is formulated as follows,

LG = λ1 ∗ L(G;D) + λ2 ∗ La + λ3 ∗ Lf , (1)
LD = L(D;G), (2)

where LG denotes the generator loss, L(G;D) is the adversar-
ial loss for the generator, La denotes the acoustic loss similar to
the one used in [3], and Lf represents the feature loss. While
LD denotes the discriminator loss, which only possesses the
adversarial loss term L(D;G) for the discriminator. As for the
weights λ1, λ2, and λ3 in Eq. (1), they are set as 0.1, 1, and 1
in this paper, respectively.

2.3.1. Adversarial loss

The adversarial loss proposed in LS-GAN [24] is also used in
the training stage of XiaoiceSing2. The formula is shown as

Ladv(G;D) = Ez∼N (0,1)[(1−D(G(z)))2], (3)

Ladv(D;G) = Ex∼pdata [(1−D(x))2] + Ez∼N (0,1)[D(G(z))2],

(4)

where z denotes the random noise and x is the real mel-
spectrogram. This format of adversarial loss can avoid the gra-
dient vanishing while training the GAN [24].

2.3.2. Acoustic loss

The acoustic loss is also a weighted sum of the loss terms for
the predicted acoustic features, which is shown as

La = α1 ∗ Lmel + α2 ∗ Lpitch + α3 ∗ LV/UV + α4 ∗ Ldur,
(5)

where Lmel, Lpitch, and Ldur are MSE loss for the mel-
spectrogram, pitch, and duration, respectively. While LV/UV

is a binary cross-entropy loss for the V/UV decision. Besides,
the weights α1, α2, α3, and α4 are set as 1, 0.01, 0.01, and 0.1,
respectively.

2.3.3. Feature loss

Feature loss was proposed in [25] and was introduced into the
speech field in MelGAN [26]. The generator can make full
use of the information brought by the discriminator via learn-
ing from the L1 similarity metric between the feature maps of
the real and fake data. It can be formulated as

Lf = Ez,x[
∑

k=1,2,3

(

Ls∑

i=1

1

Ni
||Di

ks(x)−Di
ks(G(z))||1

+

Ld∑

j=1

1

Nj
||Dj

kd(x)−Dj
kd(G(z))||1)],

(6)

where || · ||1 denotes the L1 distance, Di
ks( · ) and Dj

kd( · )
denote the feature maps of i-th and j-th layer of the k-th SD
and DD, respectively. Ni and Nj are the numbers of the corre-
sponding feature map. Ls and Ld denote the number of layers
of SD and DD, respectively. Since the multi-band discrimina-
tor has three sub-discriminator, the feature loss for each sub-
discriminator is merged in Eq. (6).

3. Experiments
3.1. Dataset

We conduct the experiment on our internal singing voice dataset
including 6917 pieces of singing voices from a Mandarin
female singer, which is identical to the one used in HiFi-
WaveGAN [21]. All audios are sampled at 48kHz. The duration
of audio in the dataset ranges from 4s to 10s and the total dura-
tion is 5 hours. We transform each audio into the corresponding
STFT spectrogram by applying 20ms window with 5ms shift.
The spectrogram is converted to mel-scale by 120 filters. The
pitch and V/UV decision are extracted by using the Parselmouth
[27] toolkit which is a Python interface to Praat [28]. As for the
division of data, we randomly choose 300 segments for valida-
tion and 300 segments for testing. The remaining data is used
for training.

3.2. Baseline system

Since XiaoiceSing2 is improved based on XiaoiceSing, Xiaoic-
eSing is selected as the baseline system. XiaoiceSing adapts
FastSpeech [6] from TTS to SVS by extending the inputs and
outputs of the model. It concatenates the pitch sequence, dura-
tion sequence, and phoneme sequence as the input to the model
and it outputs the mel-spectrogram, V/UV decision, and logF0
for the vocoder. Besides, it uses a residual connection between
input pitch and output logF0 to lower the difficulty of training.
We train the model with the same optimization strategy in [3].
As for the vocoder, we utilize the HiFi-WaveGAN [21] to gen-
erate high-fidelity singing voices for fair comparison because it
is designed for the scenario of 48kHz SVS.

3.3. Training methodology

XiaoiceSing2 is trained on 4 NVIDIA V100 GPUs with 32
batch size for 300 epochs until convergence, which costs 24
hours. We use Adam [29] optimizer with 0.01 learning rate, 0.9
β1, 0.98 β2, and 10−9 ϵ to train the both generator and discrim-
inator. In addition, we adopt a warmup strategy that is identical
to the one in [17] to adjust the learning rate for better optimiza-
tion.
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Table 1: MOS test result with 95% confidence interval of the
ground truth and different acoustic models for 48kHz singing
voice synthesis.

Vocoder MOS(↑)

Ground truth 4.27± 0.044
XiaoiceSing + HiFi-WaveGAN 3.30± 0.073
XiaoiceSing2 + HiFi-WaveGAN 4.23± 0.044

(a) XiaoiceSing (b) XiaoiceSing2

Figure 2: Mel-spectrograms generated by XiaoiceSing and Xi-
aoiceSing2, respectively.

3.4. Subjective evaluation

To show the quality of the singing voices generated by Xiaoic-
eSing2, we conduct a subjective evaluation for the real and syn-
thesized audio. 20 listeners are asked to give their opinion score
to 20 segments in terms of quality and naturalness of the singing
voices, which indicates we collect 400 scores for the ground
truth as well as each system. Table 1 summarized the evalua-
tion result. Compared with the MOS of XiaoiceSing, the pro-
posed XiaoiceSing2 significantly outperform it by over 0.93 in
term of the MOS metric. And the number of the fluctuation
in the 95% confidence interval shows XiaoiceSing2 is much
more stable than XiaoiceSing when synthesizing high-fidelity
singing voices. In addition, the MOS of XiaoiceSing2 is very
close (−0.04) to the ground truth from the table, which means
our model can synthesize the human-level singing voices in the
48kHz scenario.

3.5. Spectrogram analysis

Although the MOS test result indicates the quality of the singing
voices generated by XiaoiceSing2 is much better than it of Xi-
aoiceSing, it is necessary to find some evidence from the gener-
ated mel-spectrograms to support this conclusion. As Figure 2
shows, it seems the left mel-spectrogram generated by Xiaoic-
eSing has more distinct spectral lines compared with the right
mel-spectrogram generated by XiaoiceSing2. However, the dis-
tinct mel-spectrogram also indicates the severe over-smoothing
problem for high-fidelity singing voice generation. Compared
with Figure 2(a), Figure 2(b) obviously reserves more details in
the transition regions between the adjacent spectral lines, which
demonstrates the over-smoothing problem is alleviated. In ad-
dition, the over-smoothing problem in the high-frequency parts
circled in Figure 2(a) also leads to audible hissing noise in the
generated audio.

3.6. Ablation study

In this paper, we proposed multiple points to improve the qual-
ity of high-fidelity singing voices. It is reasonable to figure out

Table 2: Ablation study to show the contribution of the pro-
posed components. The XiaoiceSing model of the first line pre-
dict MGC and BA rather than the mel-spectrogram. While other
models predict the mel-spectrogram.

Vocoder MOS(↑)

XiaoiceSing + WORLD [3] 3.39± 0.058
XiaoiceSing + HiFi-WaveGAN 3.30± 0.073
(+ConvFFT) + HiFi-WaveGAN 3.33± 0.072
(++SD) + HiFi-WaveGAN 4.20± 0.043
(+++DD) + HiFi-WaveGAN 4.23± 0.044

the contribution of each proposed component to the quality of
the synthesized audio. Therefore, we conduct an ablation study
to demonstrate the improvement of each component. As Ta-
ble 2 shows, the first line of it indicates the result of the origi-
nal XiaoiceSing system described in [3]. Instead of predicting
the mel-spectrogram, it generates the mel-generalized cepstrum
(MGC) and band aperiodicity (BA) for the WORLD vocoder
[12]. The result of it is slightly better than the combination
of XiaoiceSing described in Section 3.2 and HiFi-WaveGAN
vocoder [21] because the model of the original XiaoiceSing
learns more information from the training data.

When the ConvFFT module is incorporated into the Xiaoic-
eSing as the third line shows, the MOS is boosted by 0.03,
which means even only substituting the FFT in XiaoiceSing
with the ConvFFT module, it is helpful to generate a better mel-
spectrogram. Based on it, we change the sequence-to-sequence
(S2S) model of XiaoiceSing to a GAN-based model by adding
all segment discriminators as the fourth line shows. The MOS
metric is largely promoted from 3.33 to 4.20 as expected, which
proves that the GAN-based model has a huge advantage over the
S2S model for high-fidelity singing voice synthesis. The last
line in the table shows the result of the proposed XiaoiceSing2.
By combining the segment and detail discriminators, the MOS
is improved by 0.03 further because of the better construction
of the middle- and high-frequency parts.

4. Conclusion

We propose a novel GAN-based acoustic model XiaoiceSing2
for SVS in this paper to relieve the over-smoothing problem in
the middle- and high-frequency parts of the mel-spectrogram.
In the FastSpeech-based generator, the new ConvFFT block
combines the MHSA block and multiple residual convolu-
tional blocks in parallel to couple the global and local informa-
tion, which is beneficial to generate a more fine-grained mel-
spectrogram as shown in the experiment. As for the discrimina-
tor, we extend the multi-band discriminator used in HiFiSinger
by randomly clipping the mel-spectrogram into several seg-
ments so that the discriminator can increase the capability from
the different long-term dependencies. Additionally, a detail dis-
criminator accompanying the segment discriminator is used to
pay more attention to middle- and high-frequency parts of the
mel-spectrogram. The powerful discriminator also forces the
generator to produce a more realistic mel-spectrogram. The ex-
perimental result on the 48kHz singing voice dataset proves that
XiaoiceSing2 is able to generate high-quality mel-spectrogram,
especially in middle- and high-frequency regions.
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