
MF-PAM: Accurate Pitch Estimation
through Periodicity Analysis and Multi-level Feature Fusion

Woo-Jin Chung1, Doyeon Kim1 Soo-Whan Chung2 Hong-Goo Kang1

1Dept. of Electrical & Electronic Engineering, Yonsei University, South Korea
2NAVER Cloud, South Korea

woojinchung@dsp.yonsei.ac.kr ehyeon24@dsp.yonsei.ac.kr, soowhan.chung@navercorp.com,
hgkang@yonsei.ac.kr

Abstract
We introduce Multi-level feature Fusion-based Periodicity
Analysis Model (MF-PAM), a novel deep learning-based pitch
estimation model that accurately estimates pitch trajectory in
noisy and reverberant acoustic environments. Our model lever-
ages the periodic characteristics of audio signals and involves
two key steps: extracting pitch periodicity using periodic
non-periodic convolution (PNP-Conv) blocks and estimating
pitch by aggregating multi-level features using a modified bi-
directional feature pyramid network (BiFPN). We evaluate our
model on speech and music datasets and achieve superior pitch
estimation performance compared to state-of-the-art baselines
while using fewer model parameters. Our model achieves 99.20
% accuracy in pitch estimation on a clean musical dataset.
Overall, our proposed model provides a promising solution for
accurate pitch estimation in challenging acoustic environments
and has potential applications in audio signal processing.
Index Terms: Neural pitch estimation, multi-level fusion

1. Introduction
Voice is an intrinsic attribute of humans and depends on the
physiological articulatory anatomy of each person. When pro-
ducing speech, an intricate combination of organs, from the
lungs to the mouth and throughout the vocal tract, collaborates
to produce an individual’s unique voice. In particular, pitch
or fundamental frequency is widely regarded as a prominent
characteristic of a speaker’s voice among other acoustic fea-
tures, and it is essential for various speech-oriented tasks such
as speech enhancement [1, 2], speech separation [3, 4], speech
synthesis [5, 6], and speaker verification [7, 8].

Previously, stochastic approaches such as normalized auto-
correlation or zero-crossing intervals were primarily used to
estimate the periodicity of speech in the time domain [9–11].
Other techniques such as difference functions and spectral anal-
ysis have been used to explore the harmonicity of signals in
the frequency domain [12]. pYIN [13] used the local min-
ima of the cumulative mean normalized difference function and
hidden Markov models for probabilistic modification, whereas
SWIPE [14] estimated the pitch in the frequency domain using
the sawtooth waveform spectrum. Hybrid approaches that an-
alyzed both the time and frequency domains propose for more
stable performance [15, 16]. However, despite their lightweight
approach, these stochastic methods have shown unstable pitch
estimation performances due to various limitations. Typically,
an accurate estimation of pitch is challenging due to its depen-
dence on multiple factors including intonation, emotion, and
even physiological factors that may vary over time. Moreover,
pitch estimation in observed speech remains a challenging task
due to the potential distortions caused by environmental factors.

Deep learning techniques in speech processing have signif-
icantly improved the performance of pitch estimation. In [17],
the authors have proposed effective estimation networks based
on the sequential modeling of neural networks. CREPE [18]
leveraged convolution neural networks (CNNs) considering the
noise distortion, while DeepF0 [19] utilized a dilated causal
convolution network for large receptive field observation. Both
methods have proved that neural networks are effectively used
to analyze the acoustic characteristics of speech signals. More
recent studies have focused on the development of models that
consider acoustic characteristics rather than relying solely on
neural networks. SPICE [20] analyzed the pitch shift mapped
by constant-Q transform (CQT), and HarmoF0 [21] captured
the harmonic structure closely related to pitch from a log-
spectrogram using multiple rates dilated causal convolution.
These studies demonstrated that considering the acoustic char-
acteristics of speech signals improves the performance of pitch
estimation.

In this paper, we propose a novel lightweight pitch estima-
tion model, Multi-level feature Fusion-based Periodicity Anal-
ysis Model (MF-PAM), which operates on the raw audio wave-
form. The proposed model is composed of two stages: analysis
and estimation. During the analysis stage, MF-PAM extracts
the periodicity of the feature maps from the input speech uti-
lizing two submodules. The low-level submodule distinguishes
the periodic and non-periodic characteristics by using periodic
and non-periodic convolution (PNP-Conv) blocks. The PNP-
Conv blocks analyze the input with a dual-path convolution
layer using a snake function [22], which is sensitive to peri-
odic representations. The high-level submodule employs pe-
riodic convolution (P-Conv) blocks to further extract the peri-
odic components, while its following long short-term memory
(LSTM) layer enables sequential modeling of the extracted peri-
odic features. In the estimation stage, we utilize a modified bi-
directional feature pyramid network (BiFPN) to aggregate the
multi-level features extracted in the analysis stage. The multi-
level feature fusion provides an accurate and effective pitch es-
timation by referencing various latent representations from each
layer. The designed neural network is optimized to pitch track-
ing task with only 0.362M parameters, indicating the effective-
ness of the proposed composite modules and their ability to
perform well without relying on high computational power or
a large number of model parameters. Our experiments on vari-
ous datasets and ablation studies demonstrate the effectiveness
of MF-PAM compared to that of the baselines and highlight the
importance of the submodules in extracting pitch components
in various environments. In addition, our lightweight model,
MF-PAM-S, exhibits notable pitch estimation accuracy despite
having only 0.213M parameters which is equivalent to 59% of
the smallest baseline model.
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Figure 1: Illustration of the proposed model, MF-PAM.

2. Related works
2.1. Snake function

In [22], the authors investigated the extrapolation properties of
activation functions and proposed an effective activation func-
tion sensitive to periodicity, the Snake function. Neural net-
works that use the Snake function demonstrate impressive re-
sults in solving periodic problems such as atmospheric predic-
tion, body temperature prediction, and financial data prediction.
In addition, the Snake activation function was found to be ad-
vantageous in the optimization of model training compared to
other periodic baselines. The Snake function is formulated as
follows:

Snakea(x) = x+
1

a
sin2(ax), (1)

where a denotes a pre-fixed constant that affects the frequency
range the function focuses on. The authors reported that larger
values of a were more effective for input with periodic char-
acteristics, while smaller values of a were appropriate for non-
periodic or standard tasks such as image classification.

2.2. BiFPN

BiFPN [23] is one of the multi-scale fusion models [24, 25] de-
vised for object recognition. BiFPN is a feature pyramid net-
work that improves the target task with top-down and bottom-
up pathways and cross-connections. It matches the channel dif-
ference using convolution layers and the resolution difference
by re-sampling. Since different resolution features contribute
unequally to the output, BiFPN provides a fast normalize fu-
sion method with learnable weights. With the lower network
complexity and time cost, BiFPN achieve better object detec-
tion performance than that of the previous methods.

3. Proposed model
The speech signal exhibits a quasi-stationary characteristic,
with its periodicity primarily arises from the pitch. Therefore,
our proposed model, MF-PAM, is designed to be sensitive to
the periodicity of speech signals, which is beneficial for accu-
rate pitch estimation. MF-PAM emphasizes periodic character-
istics in the latent representation and estimates pitch trajectory
based on the representations. The overall structure, as shown
Figure 1, comprises two stages: analysis and estimation. In
the analysis stage, MF-PAM extracts periodic information by

eliminating non-periodic information in low-level representa-
tions. The estimation stage tracks the pitch trajectory by lever-
aging the representation obtained from the analysis stage using
a BiFPN module optimized for pitch estimation.

3.1. Analysis stage

In the analysis stage, MF-PAM analyzes speech signals by
leveraging periodicity-sensitive modules, which include pe-
riodic convolution (P-Conv), non-periodic convolution (NP-
Conv), and periodic and non-periodic convolution (PNP-Conv)
blocks. Our analysis structure is designed to first eliminate non-
periodic information from the input and then enforce periodic
characteristics. In particular, the structure comprises two PNP-
Conv blocks followed by three P-Conv blocks and an LSTM
layer. The PNP-Conv block consists of a dual-path convolu-
tion block, where one path is a P-Conv block, and the other is
a NP-Conv block. Both modules have two convolution layers
in a stack, activated by the ReLU function and rectified by the
Snake function. The main difference between the P-Conv and
NP-Conv block is the parameter a in Eq. (1), which controls
the frequency range of the periodicity. Referring the findings
in [22], the Snake function effectively processes periodic infor-
mation with large a values (5-50), while small a (0.2-0.5) is
suitable for processing non-periodic characteristics. Therefore,
we set a as 0.2 for all NP-Conv blocks to eliminate non-periodic
components, while a of P-Conv blocks are set differently with
larger values. As the receptive field size of each layer increases,
it becomes capable of capturing a larger range of temporal in-
formation. Based on our preliminary experiments, we gradually
reduced the values of a in higher-level P-Conv blocks that have
larger receptive fields, to (17, 13, 11, 7, 5) in order to increase
sensitivity to the low-frequency range. Subsequently, an LSTM
layer enables powerful sequential modeling for pitch tracking.

3.2. Estimation stage

In this work, we transform the pitch estimation problem into
a classification task similar to [21], which estimates the level
at which the pitch exists among 360 quantized levels of a lim-
ited frequency range. Therefore, in the estimation stage, MF-
PAM estimates the discrete pitch frequency quantized in loga-
rithmic scale by aggregating the multi-level features from the
analysis stage using a modified BiFPN module. In Figure 1,
there is an overall structure of the BiFPN optimized for MF-
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PAM, which has half number of channels compared to the
vanilla BiFPN. The pre-sizing block aims to adjust the tempo-
ral resolution of the multi-level features to half that of the third-
level feature (P3), while maintaining the channel size. This is
achieved through up- and down-sampling and using a depth-
wise separable convolution layer. The resized five multi-level
features are fused as below:

Pmid
i = DSC

(
w1 · P in

i + w2 · P in
i+1

w1 + w2 + ϵ

)
, (2)

P out
i = DSC

(
w′

1 · P in
i + w′

2 · Pmid
i + w′

3 · P out
i−1

w′
1 + w′

2 + w′
3 + ϵ

)
, (3)

where Pi and wi denote the i-th level feature and its learnable
weight factor, respectively. DSC indicates the depthwise sepa-
rable convolution layer activated by a Swish function [26]. The
ϵ is set as 1e-4.

The BiFPN output is projected onto 360-dimensional quan-
tized frequency bins using a projection layer, which has a fully-
connected layer followed by a sigmoid function. There is a 25-
cent interval between consecutive quantization levels, and the
frequency range is from 32.7Hz to 5834.5Hz. The level can
be converted to the frequency in Hertz using f(i) = 32.7 ×
225i/1200 [Hz], where i denotes the index of the level.

3.3. Training criteria

The entire model is trained in an end-to-end manner, and we fol-
low a similar training criterion as in [21], which involves mini-
mizing the binary cross-entropy loss between the target one-hot
vector y and the predicted output vector ŷ as follows:

L(y, ŷ) =
360∑

i=1

(−yi log ŷi − (1− yi) log (1− ŷi)) (4)

4. Experiments
4.1. Experimental details

Datasets. We trained and evaluated pitch estimation models in
four different datasets that were resampled to 16kHz as listed.
• VCTK-corpus (VCTK) [27] contains 44 hours of clean

speech obtained from 109 speakers. We used 100 speakers
(40,212 utterances) for the training set and unseen 9 speakers
(4,030 utterances) for the test set. The ratio of male to female
numbers is close to one.

• PTDB-TUG (PTDB) [28], typically used to evaluate the
pitch tracking performance, consists of 576 minutes (4,720
utterances) of speech recorded by 20 English speakers. It in-
cludes laryngograph and reference pitch trajectories.

• MDB-stem-synth (MDB) [29] contains 418 minutes of 230
solo tracks, re-synthesized from the MedleyDB dataset [30].
It consists of various instrumental sounds and singing voices
with the F0 annotations.

• MIR-1k (MIR) [31] contains 133 minutes of singing voices
(11 males, 8 females) recorded with the musical accompani-
ment, and pitch annotations.

We splitted the datasets into training, validation, and test sets
in ratio of 3:1:1, except for the VCTK dataset. To evaluate the
robustness of models to environmental distortion, we created a
dataset called VCTK-Distortion (VCTK-DT). This dataset was
generated by convolving speech signals from the VCTK dataset
with room impulse responses obtained from the MIT Impulse
Response Survey [32], and adding noise from the NOISEX-92

Table 1: Performance results on four clean datasets. Average
raw pitch accuracy (RPA) and raw chroma accuracy (RCA).
Both high RPA and RCA scores indicate better performances.

Model Params.
(M)

Metrics
(%) VCTK PTDB MDB MIR

pYIN [13] - RPA ↑ 54.20 50.51 90.12 90.47
RCA↑ 55.00 51.30 90.71 91.06

SWIPE [14] - RPA ↑ 77.74 67.45 92.50 96.36
RCA↑ 73.44 69.50 93.34 96.73

CREPE [18] 22.240 RPA ↑ 89.92 81.44 96.34 96.41
RCA↑ 91.23 84.26 96.74 96.72

DeepF0 [19] 4.961 RPA ↑ 90.82 93.14 98.38 97.82
RCA↑ 91.33 93.47 98.44 98.28

HarmoF0 [21] 0.377 RPA ↑ 95.00 93.56 98.40 98.34
RCA↑ 95.01 93.59 98.46 98.46

MF-PAM 0.362 RPA ↑ 96.62 97.12 99.20 98.97
RCA↑ 96.62 97.13 99.20 98.99

MF-PAM-S 0.213 RPA ↑ 96.33 96.62 99.05 98.93
RCA↑ 96.33 96.62 99.05 98.96

dataset [33]. The signal-to-noise ratio (SNR) was randomly se-
lected from the ranges (-7, -2, 3, 8, 13) dB for the training set
and uniformly selected from the ranges (-5, 0, 5, 10, 15) dB for
the test set. To acquire ground-truth pitch trajectory, we used
DIO [10, 11] algorithm.
Network configurations. The input (Cin) and output (Cout)
channel sizes of the PNP-Conv and P-Conv blocks are (1, 6,
12, 24, 48) and (6, 12, 24, 48, 96), respectively, with a stride
of 4 and dilation of 1. The kernel sizes (K) are sequentially
increased by 4, 4, 8, 8, and 12 in each block to utilize a larger
receptive field. For the light BiFPN, depthwise separable con-
volution layers have a kernel size of 5, strided and dilated by 1.
In addition, we up-sampled the input by a factor of 4 using the
sinc interpolation filter [34] before the analysis stage to provide
richer context information.
Evaluation protocols. We evaluated the pitch estimation per-
formance using raw pitch accuracy (RPA) and raw chroma ac-
curacy (RCA) [35], and the threshold was set to 50 cents. RPA
and RCA measure the percentage of the number of frames, in
which the pitch errors are smaller than the threshold value. The
difference between RCA and RPA is that the RCA ignores the
error by a single octave since the chroma represents 12 differ-
ent pitch classes without the concept of an octave in musical
datasets. We measured the mean absolute error (MAE) on the
VCTK dataset to evaluate the pitch error in Hz.

4.2. Results

To evaluate the accuracy of the estimated pitch, we com-
pared the pitch estimation performance of the proposed
model with the two signal processing based methods
(pYIN [13], SWIPE [14]) and three deep learning-based models
(CREPE [18], DeepF0 [19], HarmoF0 [21]).
Comparison with baseline models. Table 1 shows the pitch
estimation performance of the proposed model and baselines
on the four clean datasets. Our proposed model outperformed
baselines in every metric and dataset. In general, the number
of periodic components in VCTK and PTDB datasets is less
than that of musical datasets. Thus the pitch estimation perfor-
mance of the baseline models showed a more severe degradation
than that of MF-PAM. For the MDB dataset, our model showed
an estimation accuracy of >99% in terms of RCA and RPA,
even with the smallest number of network parameters (0.362
M). We achieved higher pitch estimation performance with over
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Figure 2: Pitch estimation performances in various SNRs on the VCTK-DT test set. (a) MAE (Hz) in log-scale; (b) RPA (%); (c) RCA
(%). The gray, blue, yellow, and red bars indicate the results for CREPE, DeepF0, HarmoF0, and the proposed model MF-PAM. The
low MAE, high RPA, and RCA indicate better performance.

Table 2: Performance results on VCTK-DT. Average mean ab-
solute error (MAE), raw pitch accuracy (RPA), and raw chroma
accuracy (RCA). Up arrow indicates that higher score is better
while down arrow indicates lower score is better.

Model FLOPs
(G) Metrics All Noise Reverb Clean

CREPE [18] 480.875
MAE (Hz)↓ 8.24 6.59 5.12 3.33
RPA (%) ↑ 74.51 80.43 83.31 89.92
RCA (%) ↑ 77.83 83.15 85.36 91.23

DeepF0 [19] 1378.921
MAE (Hz)↓ 10.49 8.24 5.54 3.25
RPA (%) ↑ 68.66 77.82 80.56 90.82
RCA (%) ↑ 70.97 79.28 81.68 91.33

HarmoF0 [21] 43.705
MAE (Hz)↓ 1.91 1.66 1.22 0.82
RPA (%) ↑ 87.52 90.52 91.18 95.00
RCA (%) ↑ 87.53 90.53 91.19 95.01

MF-PAM 0.101
MAE (Hz)↓ 1.64 1.35 1.10 0.69
RPA (%) ↑ 90.05 92.20 93.29 96.62
RCA (%) ↑ 90.05 92.20 93.29 96.62

MF-PAM-S 0.101
MAE (Hz)↓ 2.08 1.56 1.30 0.88
RPA (%) ↑ 87.89 91.82 91.45 95.32
RCA (%) ↑ 87.89 91.82 91.45 95.32

40 % fewer parameters by eliminating the LSTM layer in MF-
PAM (MF-PAM-S), compared to HarmoF0. These results indi-
cate the effectiveness of the proposed modules.

Figure 2 depicts the estimation performance of the baseline
models and MF-PAM in various SNRs based on the VCTK-
DT. Evidently, MF-PAM significantly outperforms the base-
lines across all the metrics (MAE, RPA, and RCA), especially
in -5 and 0 dB SNRs. Table 2 presents the model performance
in various environments; Clean, Noise, Reverberation (Reverb),
and all distortions (All) based on the VCTK-DT. The table
demonstrates that MF-PAM accurately estimated the pitch in
all environments and exhibited a minor performance degrada-
tion in harsh conditions.
Ablation study. We further investigated the individual contri-
butions of each proposed module, the PNP-Conv block and the
light BiFPN as shown in Figure 3. We replaced the PNP-Conv
block with the P-Conv block with a larger hidden channel size
to match the model size with the ‘w/o PNP-Conv block’ setup.
For the ‘w/o light BiFPN’ setup, we removed the light BiFPN
layer, and for the ‘w/o multi-level’ setup, we only used the last
feature of the analysis stage as the input for the light BiFPN. As
shown in Figure 3, while the pitch estimation accuracy of ‘w/o
PNP-Conv’ was similar to that of MF-PAM in the clean environ-
ment (RPA: 96.62% vs. 96.07%), MF-PAM demonstrated more
robust pitch estimation performance in low SNRs compared to
‘w/o PNP-Conv’ (RPA: 84.52% vs. 81.28% in -5 dB SNR). The
results demonstrate that the PNP-Conv block encouraged the
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Figure 3: Ablation study for each module in various SNR levels
on the VCTK-DT test set. Average raw pitch accuracy (RPA).
High RPA scores indicate better performance.

proposed model to extract only pitch-related information even
in extremely noisy conditions. Although ‘w/o multi-level’ has
a bigger model size than ‘w/o light BiFPN’, both showed sim-
ilar pitch estimation performance (RPA: 95.42% vs. 95.32%
in clean signal). These results indicate that the light BiFPN
architecture as well as the multi-level features are crucial for
improving the pitch estimation performance.

5. Conclusions
In this paper, we proposed a novel pitch estimation model, MF-
PAM, which extract periodic-related information effectively
from the raw audio input using periodicity-sensitive blocks.
The pitch-related representation was processed by leveraging
a multi-level feature fusion model, BiFPN, and projected onto
quantized frequency levels for the pitch estimation. Our experi-
mental results demonstrated that MF-PAM outperformed state-
of-the-art baseline models in various datasets and conditions,
thanks to its structural configurations that consider the period-
icity of speech signals. We further conducted ablation studies to
investigate the contributions of the submodules of MF-PAMand
confirmed their effectiveness. Moreover, the lightweight ver-
sion of our proposed model, MF-PAM-S, achieved competitive
performance in terms of RPA and RCA with significantly fewer
parameters, over 40% less than the smallest baseline model.
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[9] A. De Cheveigné and H. Kawahara, “Yin, a fundamental fre-
quency estimator for speech and music,” The Journal of the
Acoustical Society of America, vol. 111, no. 4, pp. 1917–1930,
2002.

[10] M. Morise, H. Kawahara, and H. Katayose, “Fast and reliable f0
estimation method based on the period extraction of vocal fold vi-
bration of singing voice and speech,” in Audio Engineering Soci-
ety Conference: 35th International Conference: Audio for Games,
2009.

[11] M. Morise, H. Kawahara, and T. Nishiura, “Rapid f0 estimation
for high-snr speech based on fundamental component extraction,”
IEICE Transactions on Information and Systems (Japanese Edi-
tion), vol. 93, pp. 109–117, 2010.

[12] P. Boersma et al., “Accurate short-term analysis of the funda-
mental frequency and the harmonics-to-noise ratio of a sampled
sound,” in Proceedings of the Institute of Phonetic Sciences, 1993.

[13] M. Mauch and S. Dixon, “pyin: A fundamental frequency esti-
mator using probabilistic threshold distributions,” in Proceedings
of the IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP), 2014.

[14] A. Camacho and J. G. Harris, “A sawtooth waveform inspired
pitch estimator for speech and music,” The Journal of the Acous-
tical Society of America, vol. 124, no. 3, pp. 1638–1652, 2008.

[15] M. Wu, D. Wang, and G. J. Brown, “A multipitch tracking algo-
rithm for noisy speech,” IEEE Transactions on Speech and Audio
Processing, vol. 11, no. 3, pp. 229–241, 2003.

[16] K. Kasi and S. A. Zahorian, “Yet another algorithm for pitch
tracking,” in IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing, vol. 1, 2002, pp. I–361.

[17] K. Han and D. Wang, “Neural network based pitch tracking in
very noisy speech,” IEEE/ACM Transactions on Audio, Speech,
and Language Processing, vol. 22, no. 12, pp. 2158–2168, 2014.

[18] J. W. Kim, J. Salamon, P. Li, and J. P. Bello, “Crepe: A convolu-
tional representation for pitch estimation,” in Proceedings of the
IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), 2018.

[19] S. Singh, R. Wang, and Y. Qiu, “Deepf0: End-to-end fundamental
frequency estimation for music and speech signals,” in Proceed-
ings of the IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP), 2021.

[20] B. Gfeller, C. Frank, D. Roblek, M. Sharifi, M. Tagliasacchi,
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