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Abstract
To enhance the reliability and robustness of language identifica-
tion (LID) and language diarization (LD) systems for heteroge-
neous populations and scenarios, there is a need for speech pro-
cessing models to be trained on datasets that feature diverse lan-
guage registers and speech patterns. We present the MERLIon
CCS challenge, featuring a first-of-its-kind Zoom video call
dataset of parent-child shared book reading, of over 30 hours
with over 300 recordings, annotated by multilingual transcribers
using a high-fidelity linguistic transcription protocol. The audio
corpus features spontaneous and in-the-wild English-Mandarin
code-switching, child-directed speech in non-standard accents
with diverse language-mixing patterns recorded in a variety of
home environments. This report describes the corpus, as well
as LID and LD results for our baseline and several systems sub-
mitted to the MERLIon CCS challenge using the corpus.
Index Terms: code-switching, child-directed speech, language
identification, language diarization

1. Introduction
In recent years, language identification and diarization have
progressed significantly, resulting in models that achieve low
error rates across different languages [1, 2]. However, most
speech processing technologies have been developed for perfor-
mance on a narrow range of audio data – adult voices, speaking
or reading a single language in a particular variety, recorded
in a controlled acoustic environment [3, 4]. However, sponta-
neous speech in-the-wild is rarely so controlled (see CHiME
data [5]). In addition, speaking in more than one language,
switching rapidly between languages, using a variety of English
other than American or British English, and adopting different
speech registers when speaking to different parties, are com-
mon for most speakers in the globalized world. Recent work
has found that language identification systems struggle to cope
with different varieties of English [6, 7, 8, 9], as well as spon-
taneous in-the-wild speech containing more than one language
and extremely short language spans [10, 11, 12]. Hence, there
is a need to develop models that can handle spontaneous code-
switched speech across different populations of speakers.

While speech technologies have been mainly trained on
adult voices, effective technology requires robustness across
speech registers (e.g., when the same speaker adopts a differ-
ent style and pitch for a different audience). For instance, child-
directed speech by adults comprises a range of acoustic features
that differentiate it from adult-directed speech, such as over-
all higher fundamental frequency, expanded pitch range, hyper-
articulation of vowel formants and tones, slower speech rate
and lengthened speech segments. These features present crit-
ical challenges for automatic language identification and lan-
guage diarization. Speech diarization systems when employed

for parent-child conversations often underestimate the number
of child vocalizations, child-adult, and adult-adult conversation
turns [13]. Moreover, many features of child-directed speech
also occur in other low-intelligibility speech contexts including
speech produced for foreigners [14], for artificial speech pro-
cessing systems [15] and when audio clarity is reduced [16, 17].
Hence reducing errors on speech containing these features will
have impacts beyond child-directed speech alone. Notwith-
standing the above, with the increase in the ubiquity of video-
calls, conversations recorded on videocall platforms across a
variety of home environments (user devices, connection speeds,
and noise types) are understudied in the field of speech process-
ing.

To enhance the inclusiveness, reliability, and robustness
of language identification and diarization systems for hetero-
geneous populations and scenarios, there is a need for sys-
tems to be trained on datasets that feature different registers
and speech patterns (e.g., US/UK English and Mainland Chi-
nese), and spontaneous codeswitching. To that end, we present
a unique audio dataset of Zoom videocalls featuring a South-
east Asian variety of English-Mandarin code-switched child-
directed spontaneous speech with diverse language-mixing pat-
terns across the speakers recorded in a variety of home environ-
ments, curated for the Multilingual Everyday Recordings - Lan-
guage Identification on Code-Switched Child-Directed Speech
(MERLIon CCS) challenge1. In this report, we describe the
MERLIon CCS challenge, with a detailed description of the
dataset, baseline experiments and the results of systems sub-
mitted to the challenge.

2. Dataset Description
The MERLIon CCS Challenge dataset [18] results from the
collaboration between researchers investigating children’s lan-
guage development in multilingual scenarios and speech engi-
neers working on spontaneous and code-switched speech.

2.1. Data Collection

The audio data collection was part of the Talk Together Study,
a large developmental study conducted in Singapore [19]. The
study is approved by the Nanyang Technological Institutional
IRB Board (IRB-2018-10-001). In the study, parents were re-
quired to narrate an onscreen wordless picture book [20] to their
children over the Zoom video-conferencing software. All par-
ticipating parents gave consent for the video calls (including
their child’s voice) to be recorded and audio to be released.
Each recorded session lasted between 3 and 35 minutes, of
which 2 to 25 minutes have been manually annotated by a team
of multilingual transcribers [21]. The MERLIon CCS Chal-

1https://github.com/MERLIon-Challenge/merlion-ccs-2023
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Figure 1: Density plots comparing English and Mandarin audio
recordings in Development (Solid line) and Evaluation (Dashed
line) sets, with strip plots indicating distribution. Top. Grain
size over Development (N = 9983 Mandarin grains; 40287
English grains) and Evaluation (N = 9766 Mandarin grains;
39473 English grains) sets. Bottom. Total duration of each lan-
guage in recordings over Development (N = 151) and Evalu-
ation (N = 154) sets.

lenge dataset includes only audio recordings.
The entire dataset (including development and evaluation

datasets) contains 305 Zoom audio recordings of 112 parent-
child pairs [18]. 103 of the parent-child pairs were recorded
at least twice on separate occasions, with a maximum of three
recordings for each pair. The dataset includes over 25 hours
of English child-directed speech and over 5 hours of Mandarin
Chinese child-directed speech. Around 10% of the speech in the
dataset is from children. Almost all adult voices in the dataset
are female, speaking to children under the age of 5.

Zoom calls were conducted in the homes of participating
families on a variety of internet-enabled personal electronic de-
vices including laptops, tablets, and mobile phones.2 Environ-
mental background noise and voices of other family members
are also presented in the recordings.

2.2. Languages and Accents

Adults in our dataset use the Singaporean variety of English
[22], which features different pronunciations from Standard US,
Standard UK, and other well-documented varieties of English,
and the Singaporean variety of Mandarin Chinese, which fea-
tures different pronunciations from the standard variety of Man-
darin (Putonghua), and other well-documented Chinese vari-
eties [23]. The Singaporean varieties also feature some unique
vocabulary and grammar [22]. The dataset includes frequent
code-switching within and between utterances.

Only 61 recordings (20%) feature one language through-
out. For parents who used both languages, the proportion of
Mandarin spoken overall ranged from 0.85% to 80.7%. The ut-
terances are short (mean of 1.4 seconds for English and 1.1 sec-
onds for Mandarin). A breakdown of the composition of files in
the Development and Evaluation sets can be found in Table 2.

2Although some metadata is available for some recordings, the
Zoom platform does not contain verifiable data about user services.

Table 1: Training datasets for the closed track

Corpus Hours Language

LibriSpeech 100 English
AISHELL 200 Mandarin

NSC 101 English
SEAME 192 English-Mandarin Code-Switching

2.3. Human Annotation

As part of the main study, each audio recording was manually
annotated by transcribers in ELAN, using the in-house tran-
scription protocol [21]. As part of this protocol, transcribers
were instructed to segment and annotate all utterances (i.e., any
sound/voice produced by the speaker via their vocal apparatus).
The start and end of an utterance are defined by intonation pat-
terns and pauses [21]. In the transcription protocol, a subdivi-
sion of an utterance, due to code-switching to a different lan-
guage, is known as a “grain”. Onsets and offsets of different
languages are marked. In addition, each utterance or subdivi-
sion is labelled with boundaries for non-linguistic communica-
tive acts including vocal sounds (e.g., humming) and non-vocal
sounds (e.g., clapping).

Transcribers were given instructions to place the start-stop
boundaries carefully, taking note to include sounds at the edge
of words (such as fricatives like /s/ at the end). In the event of
a language change, they were asked to include all word bound-
aries in each language. When overlap between speakers occurs,
transcribers are instructed to identify the start and end of each
speaker turn to the best of their abilities. To minimize transcrip-
tion errors, each file in the dataset has been crosschecked by at
least one senior member of the transcription team.

3. MERLIon CCS Challenge
The Evaluation dataset is selected to be a representative subset
of the Development dataset, where features such as ratio of En-
glish to Mandarin per recording are well-matched as shown in
Fig. 1 and Table 2. To reduce overfitting to individual parent-
child pairs, the pairs in the Evaluation dataset do not appear in
the Development dataset. Voices of some research assistants
who were initiating the videocall repeat in both Development
(4.1%) and Evaluation (4.5%) datasets.

3.1. Open and Closed Datasets for Training

For the MERLIon CCS Challenge, we created two tracks which
differ in terms of the volume of data systems can be trained on.
We refer to these tracks as open versus closed respectively.

In the closed track, to facilitate replicable research out-
comes and for systems to be broadly comparable across re-
search communities, we specified only training on pre-selected
partitions of three open-access monolingual speech corpora and
one LDC corpus (Table 1)3. The motivation behind using a
limited amount of monolingual training data is to determine
the lower limit of error rates when dealing with complex code-
switching speech with a fixed set of monolingual data resources
for training. In many contexts, monolingual speech is better
represented in existing speech corpora and may be less chal-
lenging to collect and annotate. In the open track, all systems
were allowed an additional maximum 100 hours of any pub-
licly available or proprietary data. Pretrained models that are
publicly available were also allowed in the open track.

3Access to pre-selected partitions at
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Table 2: Data distribution in Development and Evaluation sets

Dev Eval

Total duration (hh:mm:ss) 28:36:28 28:47:14
Recordings N 151 154
Parent-child pairs N 56 56
Recordings with one language N 28 33
Total English speech (hh:mm:ss) 16:09:27 15:57:02
Total Mandarin speech (hh:mm:ss) 03:04:05 03:11:04
Total other language speech (hh:mm:ss) 00:00:14 00:00:19
English segments N 40287 39473
Mandarin segments N 9983 9766
Median length of English segments (ms) 1125 1120
Median length of Mandarin segments (ms) 900 930
Mean length of English segments (ms) 1443.84 1454.73
Mean length of Mandarin segments (ms) 1106.41 1173.87
Mean Proportion of English / Total 0.85 0.83
Median Proportion of English / Total 0.95 0.94

3.2. Task 1: Language Identification

For language identification, the goal is to detect and label
the language spoken automatically in a given audio segment
marked by ground-truth timestamps of an audio recording. Dur-
ing development, systems were provided with audio recordings
where ground-truth language labels have been annotated with
timestamps. Each audio segment had a unique language label
of either English or Mandarin spoken by the parent, child or
research assistant. During evaluation, audio recordings were
provided with timestamps of audio segments, but the language
labels of these audio segments were not provided.

As the language identification task is binary, the primary
and secondary evaluation metrics were system-level equal error
rate (EER) and balanced accuracy, respectively. Only English
and Mandarin segments within each recording were scored dur-
ing evaluation. Overlapping language segments with different
language labels were not scored. For instance, for an English
speech segment overlapping with another Mandarin speech seg-
ment, both speech segments were excluded from scoring. By
contrast, English and Mandarin segments that overlap with non-
speech segments were scored. In the event of overlapping
speech, if the languages of all speakers are the same, the au-
dio segment was scored.

3.3. Task 2: Language Diarization

The goal of language diarization is to detect spans of each lan-
guage spoken in each audio recording automatically with no
pre-established timestamps for speech or language. During de-
velopment, systems were provided with audio recordings with
ground-truth timestamps and language labels. During evalua-
tion, only the audio recordings were provided. To ensure a fair
evaluation of conversational code-switching speech, language
overlaps of different language labels were evaluated. In the
event of overlapping speech, where languages were the same,
both speech segments were evaluated. When a speech segment
occurs with another speaker’s non-speech vocalizations, only
the region which contains the evaluated language segment (i.e.,
English or Mandarin) was considered for evaluation. For oper-
ational reasons in the primary study, for each recording, there
were some regions where no annotations have been performed,
i.e., there may be speech unannotated for timestamps and lan-
guage labels. Timestamps of these regions in the Development
set were provided as well. These regions were excluded from
the test audio during evaluation.

https://sites.google.com/view/merlion-ccs-challenge/datasets.

Table 3: Baseline system results

Metric Dev Eval

Equal Error Rate (EER) 22.1% 21.7%
Balanced Accuracy (BAC) 50.3% 50.9%

Language Diarzation Error Rate 86.6% 84.0%
English LDER 83.9% 80.5%

Mandarin LDER 99.8% 101.2%

The primary and secondary evaluation metrics were
system-level language diarization error rate (LDER) and indi-
vidual language error rates (LER), respectively. The LDER is
based on the speaker diarization error rate used in speech di-
arization system evaluations [24]. The LDER is computed as
the sum of:
• Language error – percentage of scored time for which the

wrong language tag is assigned to a speech region.
• False alarm speech – percentage of scored time for which a

nonspeech region is incorrectly marked as English or Man-
darin speech.

• Missed speech – percentage of scored time for which English
or Mandarin speech is incorrectly marked as nonspeech.

For each system, the individual LERs for English and Man-
darin are computed as the percentage of scored time for which
a speech region containing the target language is incorrectly
marked as non-speech or another language.

3.4. MERLIon CCS Baseline System

The baseline system is an end-to-end conformer model. The
conformer model has shown higher performance in both lan-
guage identification and speech recognition tasks [12, 25]. The
baseline model consists of four conformer encoder layers fol-
lowed by a statistics pooling layer and three linear layers with
ReLU activation in the first two linear layers. All self-attention
encoder layers have eight attention heads with input and out-
put dimensions being 512, and the inner layer of the position-
wise feed-forward network is of dimensionality 2048. The 39-
dimensional mel-frequency cepstral coefficients (MFCCs) fea-
tures comprising 13-dim MFCCs and their first- and second-
order deviations are extracted for each speech signal before be-
ing fed into the conformer encoder layers. The statistics pooling
layer then generates a 1024-dimensional output which is finally
projected by three linear layers, comprising 1024, 512, and 2
output nodes, to the number of target languages.

The baseline system is trained on the pre-selected partitions
of three monolingual speech corpora (Table 1). The speech sig-
nals in these datasets were segmented into a maximum of 3 s
prior to the feature extraction stage. The model was trained for
five epochs with batch size 32 and updated with a learning rate
that warms up from 0 to 10−4 in 5000 steps followed by the
cosine annealing decay. For language diarization, an energy-
based voice activity detection is performed to identify the silent
parts. Each speech signal is partitioned into speech clips after
removing silences before performing language identification on
these clips. We assume no code-switch exists in each speech
clip. The performance of our baseline system is summarized in
Table 3.

4. Results and Discussion
The MERLIon CCS Challenge was outlined in the evaluation
plan [26] and all submitted system outputs were evaluated via
CodaLab [27]. We compare our baseline system language iden-
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tification results to 7 systems submitted to the closed track and
6 submitted to the open track (Fig. 2). No systems were submit-
ted to the language diarization task. All submitted models made
improvements over the baseline system in terms of EER, BAC
or both. The three best performing models in the Open track
outperformed all models in the Closed track in terms of EER,
of which two of these were adaptations of systems submitted to
the closed track.

The first place winner in the Open track achieved an EER of
9.50% and a BAC of 78.9% [28]. Submitted by Speech@SRIB
(Samsung R&D Institute India-Bangalore), the system had an
ensemble learning method combining a multilingual ASR net-
work with the pre-trained Whisper-large-v2 [29]. The multilin-
gual ASR network is a transformer-based model trained on the
monolingual datasets in Table 1 and the Development set with
RNN-T loss. This model is adapted to generate the language
tag before generating the linguistic tokens. The ASR network is
then trained on a subset of the Development set with weighted
cross-entropy loss applied to the output layer. The final system
combines language posteriors from the multilingual ASR model
and Whisper model. In the closed track, the fine-tuned multilin-
gual ASR system alone ranked first, with an EER of 13.9% and
81.7% BAC.

The University of New South Wales (UNSW) Signal Pro-
cessing team submitted the second placed system in the Open
track. They fine-tuned the wav2vec2-large-robust model [30]
with phonological attributes from the Librispeech partition (Ta-
ble 1) extracted by the CMU dictionary. To handle short speech
segments, truncated utterances of 3 seconds from the Develop-
ment set were used for downstream fine-tuning in the language
identification phase. The system achieved an EER of 10.6% and
81.3% BAC.

The third place system in the Open track was submitted by
Lingua Lumos team from RingCentral [31] and utilized the pre-
trained titanet-1 model [32] in the Nvidia NeMo toolkit [33]
and handles the problem of varying speech segment lengths and
accented speech with an additional curated dataset. Six mod-
els based on the TitaNet architecture were trained on varying
segment lengths from the closed training dataset with combi-
nations of loss functions to increase model variability, forming
an ensemble system. Then, speech segments from Singaporean
English and Mandarin YouTube videos and speech of less than
6 seconds from the Mozilla CommonVoice dataset [34] were
selected. Speech segments misclassified by this ensemble sys-
tem formed a curated dataset of 44 hours. Finally, fine-tuning
of 7 different titanet-1 models was performed using the LDC
SEAME corpus, the Development set, and the curated dataset of
misidentified segments. The final ensemble 7-model, achieves
an EER of 11.1% and 76.0% BAC. In the Closed track, the
ensemble 6-model system alone ranked third, with an EER of
15.6% and 66.0% BAC.

In the Closed track, in addition to the first and third placing
systems already described, the second place system pre-trained
a bilingual Conformer ASR model on monolingual datasets in
Table 1, then fine-tuned on the Development set and segments
derived from code-switched utterances in LDC SEAME corpus
[35]. This system, submitted by SBT from John Hopkins Uni-
versity, achieved an EER of 15.5% and 70.1% BAC.

The top three systems across both tracks incorporated pre-
trained models. The challenge saw improvements to developing
language models that handle complex code-switched accented
speech. The best performing system achieved an error rate be-
low 10% and improvements of 12.2% over baseline EER and
30.4% over baseline BAC. In line with the rules of the Chal-

Figure 2: Equal error rates (bars) and balanced accuracy (dots)
of language identification systems submitted to closed and open
tracks compared to baseline EER and BAC (lines).

lenge, full model descriptions of all submitted systems can be
found at the MERLIon CCS Challenge GitHub site.

5. Conclusion
Tests performed on the MERLIon CCS evaluation dataset sug-
gest that large pre-trained models can be useful for language
identification tasks that feature code-switching speech in differ-
ent accents and registers when used in combination with mod-
els that are trained or curated via a small amount of data that
match the speech characteristics of the targeted dataset. Our
results highlight the possibility that at least 30 hours of fine-
tuning data is beneficial for large pre-trained models to adapt.
We further investigate the impact of significantly short speech
segments (e.g., less than 3 seconds), presence of local vernac-
ular (e.g., discourse markers like “lah” [22]), and rate of code-
switching on language identification performance in a separate
paper [36].

It should be acknowledged that language diarization re-
mains a complex task, particularly for recordings across diverse
recording environments and noise sources. Such requirements
give rise to a robust speech detection system that can accurately
generate speech onset and offsets before language identification
can occur. This also accounts for why we received sign-ups for
our language diarization task but no submissions. As feedback
from participants suggests, significant difficulties in identify-
ing the on and offset timings of the speech markers affected
language diarization performance. For future research, there is
a need to benchmark existing speech detection and diarization
tools on our datasets so as to ascertain its errors and impact on
subsequent language diarization performance.
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