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Abstract
Speech enhancement (SE) systems, based on generative adver-
sarial networks (GANs), are limited in improving speech qual-
ity and intelligibility. In this study, we propose a novel multiple
self-attention field method for speech enhancement (MSAF).
The models with different positions of the self-attention lay-
ers focus on different features. The output of each model is
assigned a different feature weight, which is obtained by train-
ing. Then, we fuse the models according to the feature weights
to obtain a clean speech signal. For speech quality, the pro-
posed method improves by 8.22%, 8.52%, 9.28%, and 9.40% in
CBAK, CSIG, COVL, and PESQ on average compared with the
baseline SASEGANs. The results show that the MSAF compre-
hensively improves the performance of the baseline SASEGAN
and performs better than the mainstream GAN-based SE meth-
ods. Importantly, the proposed method can be extended to other
GAN-based SE methods.
Index Terms: deep learning, multi-field self-attention, genera-
tive adversarial network (GAN), speech enhancement (SE)

1. Introduction
In recent years, more and more speech-related applications have
become popular, including controlling smart devices through
voice commands [1], supporting voice search in various scenar-
ios [2], real-time meeting records, etc. However, various noises
exist in real-world scenarios, which affects the performance of
speech-related applications. Speech enhancement (SE) is used
to attenuate noise in speech signals, thereby reducing the impact
of noise on speech-related applications.

Speech enhancement is divided into deep learning-based
methods and traditional speech signal processing methods [3].
With the rapid development of deep learning (DL), DL-based
SE methods [4, 5] perform better than the classic SE meth-
ods [6, 7]. Deep learning-based SE methods mainly include
convolutional neural networks (CNNs) [8, 9], recurrent neural
networks (RNNs) [10, 11], and generative adversarial networks
(GANs) [12, 13, 14, 15]. As reported in [16, 17], a deep neu-
ral network (DNN) was adopted as a mapping network. The
input of the network is the logarithmic power spectrum (LPS)
features of noisy speech and the output of the network is that of
clean speech. Park et al. [18] adopted a fully convolutional net-
work to map the short-time Fourier transform (STFT) of noisy
speech to that of clean speech.

Recently, SEGAN-based variants have improved SEGAN
in various aspects. In terms of input types, raw waveforms
[19] and spectrograms [20] have been utilized. However, these
SEGAN variants still rely heavily on convolutional layers. The
receptive field, as a property of convolution operations, limits
the ability of SEGAN and SEGAN variants to capture long-

range dependencies of input sequences. To address this issue,
Phan et al. [15] coupled a self-attention layer [21] with the
convolutional layer of SEGAN. The findings demonstrated that,
in all objective evaluation metrics, the SASEGAN proposed by
Phan performs better than the baseline SEGAN. But the perfor-
mance of SASEGAN is influenced by the position of the self-
attention layer.

In this paper, to solve the above issues, we propose a
novel multiple self-attention field method for speech enhance-
ment (MSAF). The models with different positions of the self-
attention layers focus on different features. Considering the ef-
fect of the position of the self-attention layers on SE perfor-
mance, SASEGANs with self-attention layers at different po-
sitions are fused. Importantly, our method may apply to other
GAN-based speech enhancement systems.

Section 2 introduces the proposed method; Section 3
presents experimental settings; Section 4 is the results and dis-
cussion, and conclusions are given in Section 5.

2. Method

2.1. Multiple Self-Attention Field Method

The mainstream of model fusion is divided into three categories:
bagging [22], stacking [23], and boosting [24]. These three
methods are mostly used in the field of machine learning, such
as random forests.

Bagging is divided into using the same algorithm and using
different algorithms. For using the same algorithm, we sample
a subset from the training set and construct a new model on
the subset. Suppose we generate M bootstrap data sets and the

Figure 1: Schematic diagram of the MSAF.
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committee prediction is given by:

ycom(x) =
M∑

m=1

ym(x) (1)

where ycom(x) denotes the committee prediction and ym(x)
denotes the output of the mth model. This procedure is known
as bagging. As shown in Figure 1, every model is input the
same training set when using different algorithms. Taking N
models as an example, αi (i=1,2,. . . ,N) represents the weight
coefficient of the ith model output accounting for the final out-
put. Fusion output is calculated by the following formula:

yfusion(x) =
N∑

i=1

αi · yi(x) (2)

where yfusion(x) denotes the output of the model fusion. One
advantage of bagging is that it allows parallel training of base
models. However, it assumes that the errors due to individual
models are uncorrelated, which is often not the case, but it can
still achieve better performance than any individual model.

The ideas of stacking and blending are similar. The predic-
tion of the basic model (level 0) is adopted as the input to build
the meta-model (level 1). The implementation steps of stacking
are all on the training set. First, the training data set is split into
N folds and the (N − 1)th fold data is used to train the first
basic model. Then, making predictions on the test folds, the
prediction results are saved. Continue the above steps N times
for the base model until it produces a prediction dataset of the
same size as the original training dataset. Repeating the above
steps for each baseline model will eventually result in predic-
tions for all base models for the entire training dataset. Now we
build the level 1 model, also known as the meta-model, which
uses the predictions of all the base models as input features and
the target values from the original training set as targets.

Schematic diagrams of the multi-field self-attention method
are shown in Figure 1. Noisy denotes a noise-corrupted audio
signal and clean denotes a clean audio signal. SA Fields indi-
cate that the model has different characteristic receptive fields
for noise. α represents the weight coefficient of the model of
different fields. Noisy signals are enhanced to clean signals by
a model with multiple fields.

2.2. Network Architecture of the proposed method

For speech enhancement, the goal is to find a function
f
(∼
x
)
:
∼
x 7→ x , where x ∈ RT denotes a clean audio signal

and
∼
x ∈ RT denotes a noise-corrupted audio signal, to recover

the clean audio signal x from the noise-corrupted audio signal
∼
x. T denotes the time length. The noise-corrupted audio signal
∼
x is defined as

∼
x = x + n ∈ RT , where n ∈ RT denotes the

additive background noise signal. By specifying the generator
as the enhancement mapping, SEGAN methods [18, 25, 26] ac-
complish this goal. To improve the attention of the network
in the correlation of time dimension, a self-attention speech
enhancement generative adversarial network (SASEGAN) [15]
was proposed. Inspired by SASEGAN, the network architecture
of base models of MSAF is shown in Figure 2.

The generator consists of an encoder and a decoder, as
shown in Figure 2(a). Each convolutional layer of the encoder
is skip-connected to a convolutional layer of the decoder. z is
a matrix randomly sampled from the Gaussian distribution, and
the size of z is the same as that of the output of the encoder.

Figure 2: Network architecture of MSAF.

Based on this, the robustness of the network is improved. Gray
blocks represent self-attention layers, which can be placed after
any convolutional layer in the encoder. In the decoder, the lo-
cation of the self-attention layer mirrors that of the encoder. f
denotes the field label of the self-attention layer.

For the discriminator, the network architecture is similar to
the generator’s encoder. The difference is that the input of the
discriminator is a pair of audios

(
x̂,

∼
x
)
.

Due to the uncertainty of the self-attention layers’ position
in SASEGANs on the effect of speech enhancement, we ob-
serve that the self-attention layer learns different features at dif-
ferent positions in SASEGAN. As shown in Figure 3, base mod-
els with self-attention layers at different positions are fused by
bagging. Here, we set N as 11.

Various losses were proposed to improve adversarial train-
ing for GAN, such as Wasserstein loss [?], least-squares loss
[?], and relativistic loss [19]. Here, the least-squares loss is
adopted. We make some improvements to it, and the objective
functions of the discriminator and the generator are written as:

min
D

LMMLS (D) = Ex,z[
1

2

11∑

l=1

(D(x, x̃)− 1)2]

+Ex,z[
1

2

11∑

l=1

D(αl ·Gl(z, x̃), x̃)
2]

(3)

min
G

LMMLS (G) = Ex,z[
1

2

11∑

l=1

(D(αl ·Gl(z, x̃), x̃)− 1)2]

+λ · Ex,z[

∣∣∣∣∣

∣∣∣∣∣
11∑

l=1

(αl ·Gl(z, x̃))− x

∣∣∣∣∣

∣∣∣∣∣
1

]

(4)

where D(·) denotes the discriminator output and Gl(·) denotes
the output of the generator with the self-attention layer placed
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Figure 3: Illustration of MSAF. SASEGAN-1 denotes the self-
attention layer is placed after the first convolutional layer in
SASEGAN and SASEGAN-11 denotes the self-attention layer is
placed after the last convolutional layer in SASEGAN.

after the lth convolutional layer. αl(l ∈ [1, 13]) denotes the
weight coefficient of the output of SASEGAN-l to the output of
MSAF. λ is a hyperparameter that adjusts the proportion of l1
loss in the full objective loss function.

It can be seen that the objective functions contain the output
of multiple models, which are called multi-model least squares
(MMLS) loss functions. SASEGANs with self-attention at dif-
ferent positions are forced to learn different latent features by
MMLS loss.

3. Experiments
3.1. Dataset

We used a public dataset, which is available1 . The dataset con-
sists of utterances from thirty speakers taken from the Voice
Bank corpus [27]. According to previous work, 28 speakers
were adopted for training and 2 speakers were adopted for test-
ing. For the training set, 10 types of noise were combined with
the clean speech of 28 speakers at signal-to-noise ratios (SNRs)
of 15, 10, 5, and 0 dB. Similarly, 5 types of noise were com-
bined with the clean speech of 2 speakers at SNRs of 2.5, 7.5,
12.5, and 17.5 dB. All speech signals were downsampled to
16kHz.

3.2. Experimental Settings

All our work was performed on the Tensorflow [28] framework.
The networks were trained using a mini-batch size of 50, RM-
Sprop [29], and a learning rate (LR) of 0.0002 for 100 epochs.
We set the weight of our L1 regularization λ to 100 for the
whole training. During training, we use a sliding window (50%
overlap) of roughly 1 second of speech to extract waveform
chunks. Instead, we slide windows without overlapping them
throughout the test audio signals and concatenate the results in

1https://datashare.ed.ac.uk/handle/10283/2791

the test phase. Both in the training and testing phases, a high-
frequency pre-emphasis filter with a factor of 0.95 is applied to
all input samples.

4. Results and discussion
The proposed method is compared with the baseline method
SASEGAN and quantitatively evaluated at PESQ (speech qual-
ity), CBAK (the invasiveness of background noise), CSIG
(speech signal distortion), COVL (the overall effect), SSNR
(segmental signal-to-noise rate), STOI (short-time objective in-
telligibility).

Results of the MSAF and the mainstream speech enhance-
ment methods are shown in Table 1. The higher the value,
the better the performance of the method. We bold the best
results for GAN-based methods. The compared methods are
divided into two parts: GAN-based methods and non-GAN-
based methods. SASEGAN-Ns denote SASEGANs that the
self-attention layers are placed in different positions, where N
is the index of the self-attention layer position. We find that
the proposed method outperforms baseline models for CBAK,
CSIG, COVL, and PESQ, as shown in Figure 4. Compared with
the baseline SASEGANs on average, the proposed method im-
proves by 9.40%, 8.52%, 8.22%, and 9.28% in PESQ, CSIG,
CBAK, and COVL. Similarly, the proposed method outper-
forms ISEGAN and DSEGAN which are GAN-based SE meth-
ods. For Non-GAN-based SE methods, the proposed method
outperforms DNN. TSN slightly outperforms the proposed
method on PESQ, COVL, and CSIG, but STOI and SSNR of
the TSN are close to noisy, as shown in Figure 5.

For a more intuitive comparison, SSNR and STOI are nor-
malized in Figure 5. The higher the bar, the better the perfor-
mance of the method. It can be seen that DNN and TSN per-
form far worse than the other methods on SSNR and STOI, even
worse than noisy-corrupted speech. This shows that TSN, while
capable of improving speech quality, performs poorly in terms
of SSNR and speech intelligibility. We find that GAN-based SE
methods can improve the STOI and SSNR of noisy-corrupted-
speech, under the premise of ensuring the improvement of
speech quality. For SSNR, MSAF obtains absolute gains of 1.71
on average compared with the baseline SASEGANs. In terms
of speech intelligibility STOI, MSAF obtains absolute gains of
0.77 on average.

The results show that the proposed method MSAF outper-
forms the mainstream SEGAN-based methods. For non-GAN-
based methods, the proposed method MSAF is comparable in
improving speech quality and outperforms it in segmental SNR
and speech intelligibility. In addition, we also conduct ablation
experiments to investigate the impact of self-attention layer po-
sitions on the results. For more details, the URL is available2.

5. Conclusions
In this study, we propose a novel multiple self-attention field
method for speech enhancement (MSAF). SASEGANs with
self-attention layers at different positions are fused. For speech
quality, the proposed method MSAF improves by 8.22%,
8.52%, 9.28%, and 9.40% in CBAK, CSIG, COVL, and PESQ
on average compared with the baseline SASEGANs. As to
SSNR and STOI, compared with the baseline SASEGANs on
average, the proposed method obtains absolute gains of 1.71
and 0.77, respectively. The results show that the MSAF compre-

2https://mmf-sasegan.github.io/
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Table 1: Results of MSAF and the mainstream speech enhancement (SE) methods.

PESQ CSIG CBAK COVL SSNR STOI(%)

Noisy 1.97 3.35 2.44 2.63 1.68 92.10

Non-GAN-based SE Methods
DNN [17] 2.45 3.73 2.89 3.09 3.64 89.14
TSN [30] 2.68 3.96 2.94 3.32 2.89 92.52

GAN-based SE Methods
SEGAN [13] 2.19 3.39 2.90 2.76 7.36 93.12
DSEGAN [14] 2.35 3.55 3.10 2.93 8.70 93.25
ISEGAN [14] 2.24 3.23 2.95 2.69 8.17 93.29
SASEGAN-3 [15] 2.32 3.51 3.07 2.90 8.53 93.35
SASEGAN-4 [15] 2.36 3.57 3.08 2.95 8.38 93.47
SASEGAN-5 [15] 2.31 3.46 2.94 2.85 7.20 93.22
SASEGAN-6 [15] 2.38 3.46 3.12 2.90 8.86 93.39
SASEGAN-7 [15] 2.30 3.52 2.98 2.89 7.34 93.38
SASEGAN-8 [15] 2.34 3.55 3.03 2.92 8.03 93.24
SASEGAN-9 [15] 2.29 3.45 3.05 2.85 8.48 93.28
SASEGAN-10 [15] 2.41 3.62 3.06 2.99 7.87 93.36
SASEGAN-11 [15] 2.35 3.57 3.03 2.94 7.76 93.19

Proposed
MSAF 2.56 3.82 3.29 3.18 9.76 94.09

Figure 4: Results of PESQ, CSIG, CBAK, and COVL for the
proposed method and the compared methods.

hensively improves the performance of the baseline SASEGAN
and performs better than the mainstream GAN-based SE meth-
ods. Importantly, the proposed method may generalize to other
GAN-based SE methods. In future work, we will try to apply it
to other mainstream GAN-based SE methods.
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