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Abstract
Recent trends have emerged to implement voice conversion
(VC) in real-world scenarios where background sounds and re-
verberation are inevitable. However, most VC studies mainly
focus on clean speech conversion, where high-quality speech
data are required for training and testing. Moreover, the back-
ground sounds and reverberation are treated as interferences to
be discarded, despite being informative to be retained in some
scenarios, such as movie dubbing and singing VC. In this paper,
we propose a reverberation-robust VC framework consisting of
a reverberation time (T60) estimation module and a VC module.
The T60 estimator is introduced to provide the VC module with
the reverberation information to model the reverberant speech.
Experimental results show that 1) our framework can disentan-
gle and control the speaker identity and reverberation from the
speech, and 2) we can get acceptable VC performances deal-
ing with reverberation, even when clean training data are not
available.
Index Terms: voice conversion, reverberant speech, reverbera-
tion modeling

1. Introduction
Voice conversion (VC) aims to convert a speaker (Source
speaker) of a speech to sound like another speaker (Target
speaker) while retaining its linguistic content [1]. Many re-
searchers have dedicated to the studies of VC even before the
advent of deep learning. These early proposed methods, such
as vector quantization (VQ) [2] and Gaussian mixture model-
ing [3], lay a foundation for the deep-learning-based ones. De-
spite deep learning significantly improves the performance of
VC in terms of speech naturalness and speaker similarity [4] and
makes it possible to use nonparallel data in VC model training,
clean speech data from source and target speakers are essen-
tially required. Moreover, new challenges have emerged when
implementing VC into real-world applications, such as commu-
nication aids for the speech-impaired [5], and voice dubbing
for movies [6], where high-quality speech data are not always
available and data in real-world often entangled with noise and
reverberation. On the other hand, these background sounds are
also informative and should be retained in the converted sam-
ples in specific applications, such as singing VC [7][8][9] and
data augmentation for speech recognition [10].

Compared to tremendous studies in conventional VC, only
a few works focus on VC in noisy and reverberant condi-
tions. However, most methods still require clean speech data
from source/target speakers for training. Moreover, background
sounds are considered interferences to be discarded. For exam-
ple, Takashima et al. [11] proposed a sparse representation-
based VC using nonnegative matrix factorization to filter out

the noise. Miao et al. [12] proposed a noise-robust VC that in-
troduces two filtering methods at the pre- and post-processing
stages, respectively, to suppress the noise. In our previous work
[13], we have developed a three-stage VC framework towards
noisy-reverberant scenarios, consisting of a pre-trained denois-
ing model, a pre-trained dereverberation model, and a nonpar-
allel VC model. Although clean speech data for the VC model
training are unnecessary, the background noise and reverbera-
tion are filtered as interferences.

Recently, some researchers have started concentrating on
noise-controllable VC, where the VC system is noise-robust,
and the background noise can be either discarded or retained
in the converted samples based on specific scenarios. Further-
more, clean speech data from source/target speakers are not
necessary. Xie et al. [14] and Yao et al. [15] have pro-
posed two noisy-to-noisy (N2N) VC frameworks to model the
noisy speech directly by introducing separated noise as condi-
tions. However, despite two methods being capable of control-
ling noise, reverberation is not considered, and how to address
it is unclear.

In this paper, we proposed a reverberation-controllable VC
framework to disentangle and control the speaker identity and
reverberation factors in a reverberant speech. A pre-trained re-
verberation time (T60) estimator is introduced to extract T60-
related information. Inspired by those noisy-to-noisy VC works
[14][15] where using separated noise to model noisy speech
data can achieve better VC performance, our VC module also
takes the estimated T60 information as the condition to model
the reverberant speech data. Furthermore, by introducing a
pre-trained TasNet for dereverberation task [16][17], our pro-
posed framework is explored in a more extreme condition where
clean training data are unavailable and instead the dereverbered
speech is used as input. Objective and subjective evaluations are
conducted, and the experimental results show that our method
achieves acceptable VC performance with reverberation con-
trol, even when clean source/target data is not provided during
training. Our contributions to this work are as follows:

• We propose a reverberation-controllable VC framework con-
sisting of a T60 estimator and a nonparallel VC model based
on variational auto encoder (VAE). A pre-trained dereverber-
ation model is also introduced for the scenario where clean
speech data are unavailable.

• We evaluate our framework with both of dereverbered- and
reverberant-speech inputs to confirm whether the framework
can disentangle the reverberation of the speech inputs, and
model the reverberation totally based on the T60-related in-
formation conditioning.

• We investigate how choosing the training data pairs
(whether input speech and/or output ground truth are clean-
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Figure 1: Overview of the proposed VC framework for control-
ling reverberation. T60 estimator is a pre-trained module, and
is fixed during the VC training stage.

, reverberant-, dereverbered-speech) in the denoising VAE
training framework will affect the VC performances.

2. VC framework for controlling
reverberation

2.1. Framework overview

Figure 1 illustrates the proposed framework consisting of a VC
model and a T60 estimator. The T60 estimator is pre-trained
on the publicly available mega dataset [18] and fixed during the
VC training. A dereverberation model is prepared and can be
optionally used to process the reverberant data.

In the training stage, the VC model receives a speech with
a clean, dereverberant, or reverberant attribute as input. In con-
trast, the same speech with a different reverberation property
is used as the ground truth to calculate the reconstruction loss,
and also the input of the T60 estimator to extract the reverber-
ation information, which is used as a condition in the decoder
of the VC model. We will discuss the different combinations
of the training data pairs (whether input speech and/or output
ground truth are clean-, reverberant-, dereverbered-speech) in
Section 3.3.

During conversion stage, source-speaker’s speech is given
as the VC model input, where the model generates a converted
speech, conditioned on a target-speaker code and a T60-related
information. Here, the T60 information is extracted from the
T60 estimator, where a speech of target T60 is given as its input.

2.2. Voice conversion model

We implemented the VC model as VQ-VAE [19], which con-
sists of an encoder, a vector quantizer, and a decoder. The en-
coder consists of five convolution blocks composed of a one-
dimensional convolution (Conv1D) layer followed by a batch
normalization layer and a ReLU activation function. Given log
mel-spectrogram sequence {xt|t = 1, ..., T} as input, the en-
coder transforms it to a sequence of latent representation de-
noted as {zj |j = 1, ..., N}. Then the latent representation is
quantized by the vector quantizer managing a trainable code-
book {ei|i = 1, ..., 512}, where ei is a 64-dimensional vector.
Each vector of the latent representation zj is mapped into the
vector ek in the codebook by the nearest distance:

ẑj = ek (1)

k = argmin
i

||zj − ei||2 (2)

where {ẑj |j = 1, ..., N} is a replaced discrete quantized repre-
sentation. The decoder consists of a lightweight recurrent net-
work to reconstruct the waveform based on ẑj and the embed-
ded speaker identity (speaker code) in an auto-regressive way.

During the training stage, the VQ-VAE is trained to mini-
mize the sum of the negative log-likelihood of the reconstruc-
tion loss and the commitment loss :

L = − 1

T

T∑

t=1

log p(xt|ẑ, c, r)+β
1

N

N∑

j=1

||zj−sg(ẑj)||2 (3)

where c is the speaker code, r is the T60-related conditioning, β
is the commitment weight, and sg(·) indicates the stop-gradient
operation. Since this function is not differentiable, the gradient
of the loss function through the codebook is approximated by
the straight-through estimator [20]. The codebook is updated
by exponential moving averages [21].

2.3. T60 estimator

The T60 estimator is implemented by the speaker encoder of the
zero-shot VC method AdaIN-VC [22], because reverberation
information shares the same characteristic as speaker identity
that is time-invariant. The T60 estimator receives an arbitrary-
length speech and extracts the reverberation-related information
into a fixed-dimensional embedding vector. In our experiments,
the estimator is pre-trained with the mean square error loss, to
outputs a single T60 value linearly transformed from the em-
bedding vector. During the training and conversion stage of
VC, the output linear layer of the estimator is removed, so that
the embedding vector extracted from the last hidden layer can
be used as the T60-related conditioning for the decoder of the
VC model. Since we do not use additional loss terms to guar-
antee the disentanglement between speaker identity and rever-
beration, the different utterances of each speaker in the training
set possess randomly sampled T60 values so that the disentan-
glement can be learned in a self-supervised way.

2.4. TasNet dereverberation model

TasNet [16][17] is a neural network that directly models the
time-domain waveform signal using a convolutional encoder-
decoder architecture. TasNet consists of an encoder that has a
non-negativity constraint on its output, a separator with deep
LSTM architecture, and a linear decoder. The separator per-
forms the enhancement step by estimating a proper weighting
function for the encoder output at each time step. Then the
decoder converts the enhanced latent representation into the
waveform signal. TasNet’s performance and its effectiveness
have been demonstrated by being compared with a number of
systems that work on time-frequency domain representations
[16][17]. We use the SD-SDR loss [23] as an objective func-
tion for training.

3. Experimental Evaluations
3.1. Dataset

All the experiments were conducted on single-channel, 8kHz
sampled speech data.

For the training of the dereverberation model, we used
WHAMR! dataset [18], which was originally designed for
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speech separation under noisy-reverberant conditions. It con-
tained 58.03 hours of speech data for training and 14.65 hours
for the validation set. We used s1 reverb set as the input
signals, which is a set of reverberated single speaker sources,
and used s1 anechoic set as the ground truth signals, which
is a clean set. Since the clips consist of 2 channels originally,
we extracted the left channel of those to make it single channel
sources.

The same dataset was used for the T60 estimator training.
We used s1 reverb and s1 anechoic sets as the input sig-
nals, and used the corresponding T60 labels as output targets.

We used VCC2018 dataset [24] for VQ-VAE VC models
training and evaluation. There were 8 source speakers and 4
target speakers in the data, where each speaker uttered 81 train-
ing clips and 35 evaluation clips. For our experimental purpose,
we generated reverberant versions of VCC2018 by convolving
with room impulse responses (RIR). We used RIR settings of
WHAMR! [18], which the T60 range was 0.1 ∼ 1.0 sec. Here,
we followed the settings of evaluation set, so those RIRs were
not seen by dereverberation model and T60 estimator during its
training. We divided the RIR settings into two groups, one to
be convolved with training sets of VCC2018, and the other with
evaluation sets. Note that different RIRs were used for gener-
ating each utterance of reverberant speech. For evaluation data,
four speakers (VCC2SM3, VCC2SM4, VCC2SF3, VCC2SF4)
were selected as source speakers, and two speakers (VCC2TF2,
VCC2TM2) as target speakers.

3.2. Model training

For VQ-VAE VC model, we used a model that was imple-
mented by [19], where we followed the same hyperparameter
settings with [13]. For TasNet dereverberation model, we used
Asteroid toolkit [25] with the same settings as [13]. For T60
estimator, we used the codes implemented by [22]. For the es-
timator training, the same hyperparameter settings with the VC
model were used. For our purpose, a linear layer with a single
output was added during its training, and removed again during
the VC training and conversion stage.

3.3. Methods to be evaluated

For the experiments, we prepared the following VQ-VAE VC
frameworks, which were similar to the denoising training:
• Model-A (trained on C-C, C-R, R-C, and R-R pairs)
• Model-B (trained on C-C, C-R, D-C, and D-R pairs)
• Model-C (trained on D-D, D-R, R-D, and R-R pairs)
Here, ”C” indicates clean speech data, ”R” indicates reverber-
ant speech data, and ”D” means dereverbered speech data, pro-
cessed by the TasNet dereverberation model. For example, ”C-
R” indicates that the pair is composed of clean input speech and
reverberant output ground truth speech. Model-A and C were
evaluated on the dereverbered input case and the reverberant in-
put case separately, in order to find out whether the VC models
can disentangle the reverberation from input speech. Model-B
was introduced to find out whether the VC performance will be
improved than Model-A if we optimize the model to the clean-
and dereverbered inputs. Model-C was introduced for more ex-
treme assumption, where clean data are unavailable.

In addition, we also prepared our previous VC framework
[13] denoted as ”Dereverb-TasNet → VC”, where the conver-
sion model was trained on dereverbered speech only, without
any T60-related information conditioning.

We used three kinds of reverberation conditioning for our

Table 1: The objective speech intelligibility (STOI) of the con-
verted speech (Compared with clean source-speaker speech).

Model Target reverberation

Rev-1 Rev-2 Rev-3 Average

Source-speaker speech 1.00 0.95 0.86 0.93

Model-A Dereverb input 0.73 0.70 0.66 0.69
Reverb input 0.72 0.68 0.64 0.68

Model-B Dereverb input 0.72 0.69 0.65 0.69

Model-C Dereverb input 0.72 0.68 0.65 0.68
Reverb input 0.71 0.67 0.64 0.67

Dereverb-TasNet → VC 0.71 - - -

Table 2: The objective speaker similarities of the converted
speech (Compared with clean target-speaker speech).

Model Target reverberation

Rev-1 Rev-2 Rev-3 Average

Target-speaker speech 1.00 0.84 0.72 0.85

Model-A Dereverb input 0.83 0.70 0.62 0.72
Reverb input 0.83 0.70 0.62 0.72

Model-B Dereverb input 0.84 0.70 0.63 0.72

Model-C Dereverb input 0.80 0.66 0.61 0.69
Reverb input 0.79 0.68 0.61 0.69

Dereverb-TasNet → VC 0.80 - - -

experiments, which were extracted from a single simulated re-
verberant utterance for each. The utterances were not uttered by
source- or target-speakers. The actual and the estimated T60,
estimated from the utterances, were as follows:
• Rev-1 - Actual : 0.00 sec, Estimated : -0.000227 sec
• Rev-2 - Actual : 0.502 sec, Estimated : 0.442 sec
• Rev-3 - Actual : 0.956 sec, Estimated : 0.831 sec
Note that the above reverberations were never seen by the dere-
verberation model, the T60 estimator, and the VC model, during
its training.

For the T60 estimator performance, when we input the
target-speakers’ evaluation utterances that were simulated with
the above three kinds of RIRs, mean errors for Rev-1, 2, and 3
were 1.09 ·10−3, 3.66 ·10−2, and 1.08 ·10−1, respectively.

3.4. Experimental results

3.4.1. Results of objective evaluation

Tables 1 and 2 show the speech intelligibility and speaker sim-
ilarities of the converted speech, respectively. Here, STOI [26]
compared with clean source-speaker reference is used for Table
1. End-to-end speaker verification system [27] is used for the
speaker similarities, compared with clean target-speaker refer-
ence, for Table 2. The first row of each table indicates the re-
sults of reference speech, which show the maximum values that
each column (target reverberation) can have. Next, from the re-
sults of Model-A, using dereverbered- or reverberant-speech as
VC model input doesn’t seem to show significant differences,
which indicates that our framework can disentangle the rever-
beration from input speech, so that it doesn’t affect the VC per-
formance much. Next, we investigate whether optimizing the
VC model to clean- and dereverbered-speech would increase
the VC performance (Model-B). Comparing it with Model-A
(dereverbered input case), the speaker similarities of Model-B
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Figure 2: The MOS results of the VC systems with 95% confi-
dence interval.

Figure 3: The SPK-SIM results of the VC systems with 95%
confidence interval.
seem to slightly increase with the score 0.84, 0.70, and 0.63, for
Rev-1, 2, and 3, respectively, while for the speech intelligibil-
ity, Model-A shows slightly better with the score 0.73, 0.70, and
0.66. But basically the differences seem to be negligibly small.
Also, for the scenario where no clean data are assumed to be
available, Model-C is investigated. From both tables, Model-
C shows slightly worse results than A, which means using no
clean data for VC training is still a challenging task. However,
if we compare our proposed method with the previous work
(Dereverb-TasNet → VC) [13], it is obvious that our proposed
method is comparable in generating clean converted speech.

3.4.2. Results of subjective evaluation

For the naturalness test, we conducted a mean opinion score
(MOS) test, where 15 listeners, recruited on Amazon Mechan-
ical Turk, were asked to give a naturalness score from 1 to 5
(higher is better). We sampled three utterances from each of
4 conversion-pairs (two source- and two target-speakers), with
3 target reverberations, converted by five systems, 1) Model-
A (Dereverb input), 2) Model-A (Reverb input), 3) Model-B
(Dereverb input), 4) Model-C (Dereverb input), and 5) Model-
C (Reverb input). We also sampled three reference speeches
from each two target-speakers with three target reverberations,
thus 198 samples were evaluated in total by every listener. For
the speaker-similarity (SPK-SIM) and reverberation-similarity
(REV-SIM) test, we conducted the SIM test [24]. In the two
SIM tests, each listener listened to two kinds of samples: a con-
verted speech, and a reference speech of the same target speaker
and the target reverberation with a different sentence. Listeners

Figure 4: The REV-SIM results of the VC systems with 95%
confidence interval.
were asked to determine whether those samples were uttered
by the same speaker for SPK-SIM, and whether the samples
have the same reverberation levels for REV-SIM: Definitely the
same, Maybe the same, Maybe different, Definitely different. We
sampled 2 utterances from each conversion-pairs and reverbera-
tions, thus 120 samples were evaluated in total by every listener.

The results are shown in Figure 2, 3, and 4. For the SIM
tests, the percentages indicate the added percentages of Defi-
nitely the same and Maybe the same. As shown in Figure 2 and
3, Model-B shows the best performances among the derever-
bered input cases, in terms of MOS and SPK-SIM. It is obvi-
ous that optimizing the VC model to clean- and dereverbered-
speech is helpful for the VC performance improvement. More-
over from Figure 2, similarly from the objective results, our
model can disentangle the reverberation from the input speech
well, as the dereverbered input and reverbered input case for
Model-A doesn’t show significant differences, where we can
get the same conclusion from Model-C as well. However, in
Figure 3 and 4, there are some gaps between dereverbered in-
put and reverbered input case, which means there might some
reverberation information left from the input speech, affecting
the VC performances. Finally reverberation-controllability can
be checked from Figure 4. Though there are some gaps be-
tween the systems, it is observable that our model can con-
trol the reverberation well, especially that Model-B shows more
than 60% of reverberation similarities for all the target rever-
berations. While Model-C has an advantage that it does not use
clean training data, it still has many rooms to improve its per-
formances, which we will focus on for our future works.

4. Conclusions
In this paper, we presented a voice conversion (VC) framework
that is robust to reverberation, and can control it. Our frame-
work consists of a pre-trained reverberation time estimator and
a nonparallel VC model, where a pre-trained dereverberation
model can be optionally used for VC training and conversion
stage. The experimental results showed that our framework can
disentangle the reverberation from the input speech, and model
the reverberation based on the reverberation conditioning. Also,
we can get acceptable performances dealing with reverberation,
even when clean training data are unavailable. As future works,
we plan to try our method for more recent VC systems and
16kHz sampled speech data.
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