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Abstract
Recently, diffusion models have exhibited higher sample qual-
ity with guidance, such as classifier guidance and classifier-
free guidance. However, these guidances have limitations:
they require extra classifiers or joint training, and incur ad-
ditional sampling cost. In this study, we propose prior-free
guidance diffusion model and prior-free guided text-to-speech
(PfGuided-TTS) that can generate a speech at a quality as high
as other guidances without extra training resources and com-
putational cost. PfGuided-TTS can generate higher human per-
ceptual quality speech than the existing autoregressive (AR) and
non-AR models, including diffusion-based TTS on LJSpeech.
In addition, we provide a schematic describing why and how
classifier- and prior-free guided scores produce high-fidelity
samples.
Index Terms: text-to-speech, diffusion model, guided score

1. Introduction
Most neural speech syntheses comprise a text-to-speech (TTS)
model and a vocoder. TTS encodes text into text-embedding
vectors and decodes the embeddings into acoustic features such
as a log-mel spectrogram. Subsequently, the vocoder converts
the acoustic features into an audible audio signal. This study
explores an acoustic model composing a neural TTS.

The two main approaches for designing neural TTS are
autoregressive (AR) and non-AR models. The AR models,
such as Tacotron2 [1], generate high-quality samples by syn-
thesizing frame-by-frame sequentially. Compared to AR mod-
els, the non-AR models, such as FastSpeech1, 2 [2, 3] and
Glow-TTS [4], have exhibited as good performance as the AR
models with lesser computational cost (especially for long se-
quences). Recently, a denoising diffusion probabilistic model
(DDPM) [5], a non-AR model, has also successfully achieved
high quality speech and pitch variety in TTS [6–8]. For in-
stance, Jeong et al. [6] proposed Diff-TTS that outperformed
other AR and non-AR models with fewer parameters. They also
demonstrated that users can control the pitch diversity by scal-
ing the noise temperature and the trade-off between the sample
quality and inference speed by adjusting the sampling steps.

As diffusion models have been developed, truncation-like
methods for diffusion models, termed guidance [9, 10] that can
improve the sample quality (while sacrificing diversity), have
been investigated. Dhariwal et al. [9] introduced classifier guid-
ance that can control the trade-off between sample quality and
diversity. Instead of denoising the estimated scores of the con-
ditional diffusion model, they adopted the unconditional diffu-
sion model’s scores guided by the gradients of the pre-trained
classifier. Ho et al. [10] derived classifier-free guidance from
classifier guidance, in which the guided scores are calculated

as a combination of the conditional and unconditional models’
scores. To avoid extra training, they joint-trained the condi-
tional and unconditional models by defining the null class.

Although these guidances successfully enhanced the sam-
ple quality, limitations remain. First, the classifier-guided score
requires the separate classifier and it could demand high train-
ing resources. For example, Kim et al. [8] trained a phoneme
classifier for Guided-TTS using 982 h extra utterances. Also,
computation for the gradients of the classifier or scores of the
unconditional model incurs additional sampling cost. This limi-
tation is critical since DDPM itself requires high computational
cost for sampling.

In this study, we propose prior-free guidance and prior-free
guided TTS (PfGuided-TTS) that can synthesize higher qual-
ity speech while requiring neither a pre-trained model nor ex-
tra computation. Instead of mixing the estimated scores of the
unconditional model, prior-free guidance uses the score of the
probability distribution of the forward process. The forward
process does not require any neural network; hence, the sam-
pling cost is sustained and joint training is avoided. Experimen-
tal results show that PfGuided-TTS can generate higher human
perceptual quality samples than Diff-TTS and even classifier-
free guided TTS (CfGuided-TTS), with a similar computational
cost as the normal sampling.

This paper contains how prior-free guidance is induced
from the classifier-free guidance and a toy example in Section 3,
and experimental results in Section 5. Also, in Section 6, we
will discuss why and how the guided scores can enhance the
sample quality.

2. Backgrounds
2.1. Diffusion model-based TTS

DDPM [5] is a method for designing a generative model, which
consists of a pre-defined diffusion process and a parameterized
denoising process. Let X0 and y denote the log-mel spectro-
gram of a speech and its corresponding text, respectively. A
TTS model pθ(X0|y) can be factorized as follows:

pθ(X0|y) =
∫

pθ(X0:T |y)dX1:T , (1)

where T is the total diffusion timesteps and {Xt}Tt=1

are latent variables of X0. DDPM aims to model the
T steps denoising process, pθ(X0:T |y), and the process
is assumed to be a Markov chain starting from XT ∼
N (0, I): pθ(X0:T |y) := p(XT )

∏T
t=1 pθ(Xt−1|Xt, y) where

pθ(Xt−1|Xt, y) := N (Xt−1;µθ,Σθ). On the other hand, the
diffusion process is defined as a pre-fixed Gaussian distribu-
tion with a Markov chain q(X1:T |X0) :=

∏T
t=1 q(Xt|Xt−1),

where q(Xt|Xt−1) := N (Xt;
√
1− βtXt−1, βtI). {βt}Tt=1

is a variance schedule that corrupts data X0 more strongly as
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Figure 1: Toy 2D examples for the prior-free guidance on the three Gaussian mixture distribution.

the step progresses. With the notations αt := 1 − βt and
ᾱt :=

∏t
i=1 αi, Xt can be sampled from X0: q(Xt|X0) :=

N (Xt;
√
ᾱtX0, (1 − ᾱt)I). The neural network is optimized

by minimizing the following simplified objective:

Lt = EX0,ϵ[||ϵt − ϵθ(Xt, y, t)||2], (2)

where the output of the network ϵθ estimates the Gaussian noise
ϵt on Xt (also known as the score estimation [11, 12]). Finally,
Xt−1 is sampled from pθ(Xt−1|Xt) = N (Xt−1;µθ,t, σ

2
t I)

where µθ,t = 1√
αt

(Xt − 1−αt√
1−ᾱt

ϵθ) and σ2
t =

1−ᾱt−1

1−ᾱt
βt. If

the process applies the noise temperature η, Xt−1 = µθ,tXt +
ησtzt, where zt ∼ N (0, I). When η < 1, blurry images are
generated in the image synthesis [9], and the pitch variability
decreases in speech synthesis [6]. We will discuss how the pro-
posed guidance and noise temperature affect the pitch diversity
in Section 5; but basically, we set η = 1 for all experiments.

2.2. Guided diffusion models

Classifier guidance [9] tunes the denoising score to perform a
truncation-like effect on sampling. Dhariwal et al. observed
that a conditional diffusion model can be factorized into an un-
conditional diffusion model and classifier as pθ(Xt−1|Xt, y) ∝
pθ(Xt−1|Xt)pθ(y|Xt−1). The denoising score on step t is
modified by scaling the distribution of the classifier as follows:

ϵ̃γ(Xt, y, t) = ϵθ(Xt, t) + γσt∇Xt logpθ(y|Xt), (3)

where γ denotes the guidance scaling. If we have an extra
classifier targeting the conditioning information, we can sam-
ple high-quality but low-diversity data when γ > 1.

Ho et al. [10] proposed classifier-free guidance from clas-
sifier guidance by factorizing the classifier pθ(y|Xt−1) into
pθ(Xt−1|Xt, y)pθ(y|Xt)/pθ(Xt−1|Xt).

p̃γ(Xt−1|Xt, y) ∝ pθ(Xt−1|Xt)pθ(y|Xt−1)
γ

∝ pθ(Xt−1|Xt)
1−γpθ(Xt−1|Xt, y)

γ .
(4)

Using this property, the guided denoising score is expressed as:

ϵ̃γ(Xt, y, t) = (1− γ)ϵθ(Xt, y = ϕ, t) + γϵθ(Xt, y, t). (5)

Here, ϕ denotes the null condition, which is a technique to avoid
training the models separately (i.e., a technique for joint train-
ing). This guidance does not require any classifier; thus, both
training and sampling processes are simplified.

3. Proposed method
Although classifier-free guidance was successfully achieved in
a simple form with similar effects to classifier guidance, it still
has limitations [10]. The sampling process costs twice as much
as the normal sampling because both conditioned and uncondi-
tioned scores must be computed. In this section, we introduce
the costless-guided denoising score, named prior-free guidance.

Let us recall pθ(Xt−1|Xt) in Eq. (4), which can be factor-
ized into pθ(Xt|Xt−1)pθ(Xt−1)/pθ(Xt) using Bayes’ rule. If
T is sufficiently large, the diffusion rates {βt}Tt=1 are relatively
close to zero [13] to prevent rapid diffusion. Then, we can as-
sume that pθ(Xt) ≈ pθ(Xt−1), which indicates that the means
and variances of the diffused data adjacent step are almost the
same (this assumption is more convincing when t is closer to
T ). Subsequently, since pθ(Xt|Xt−1) is the forward process,
it becomes the normal distribution N (

√
1− βtXt−1, βtI) re-

gardless of parameters θ. Thus, Eq. (4) can be expressed as:

p̃γ(Xt−1|Xt, y) ∝ p(Xt|Xt−1)
1−γpθ(Xt−1|Xt, y)

γ . (6)

Then, the score function for p̃γ(Xt−1|Xt, y) is derived as:

∇Xt−1 logp̃γ(Xt−1|Xt, y)

= ∇Xt−1 [(1− γ)logp(Xt|Xt−1) + γlogpθ(Xt−1|Xt, y)]

= (1− γ)
1√
βt

ϵt − γ
1

σt
ϵθ(Xt, y, t).

(7)

Note that ϵt ≡ −ϵt; therefore, the modified-guided denoising
score is defined as:

ϵ̃γ(Xt, y, t) := (1− γ)
σt√
βt

ϵt + γϵθ(Xt, y, t), (8)

then, µθ,t is modified into µ̃γ,t =
1√
αt

(Xt− 1−αt√
1−ᾱt

ϵ̃γ(Xt, y)).
Figure 1 shows a toy 2D example describing the effect of

numerically induced prior-free guidance on various condition-
ing scales. As the conditioning scales increase enough, the sam-
ples exhibit greater convergence to the mean of each distribu-
tion. However, if the scale becomes too high, the samples are
farther away from each mean. This pattern occurs equally in
speech synthesis: if γ is large enough, the synthesized speech
quality improved, but if it is too large, the quality deteriorates.
This phenomenon will be explained in detail in Section 6.

One curious fact is that the classifier- and prior-free guid-
ances are defined under Bayes’ rule by replacing the conditional
or unconditional model with an unconditional model or a nor-
mal distribution, respectively. However, the approach of revers-
ing a probability distribution using Bayes’ rule is not always
valid, even if it results in a similar effect that can trade off sam-
ple quality and diversity (this fact is also mentioned in [10]).
Instead, we will provide a schematic analysis of the expected
trajectory of the sampling process in Section 6, explaining why
both classifier- and prior-free guidances generate better samples
than the normal sampling process.

In the following sections, we will compare prior-free guid-
ance to classifier-free guidance but classifier guidance since
classifier guidance requires too high training resources. We con-
sider that it is sufficient to verify that our method has an efficient
sampling process while generating high-quality speech in com-
parison with classifier-free guidance alone.
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4. Experiments
4.1. Dataset and experimental setup

We trained TTS models using LJSpeech [14] recorded by a sin-
gle female speaker at a sampling rate of 22.05 kHz. It consists
of 13,100 audio clips whose length varied from 1-10 s with a
total duration of 24 h. We randomly split the data into training,
validation, and test set into 12,500, 100, and 500 clips, respec-
tively. The log-mel spectrogram was extracted with 1024 FFT
and window sizes, 256 hop sizes, and 80 mel bins. The audi-
ble signal was synthesized using the pre-trained vocoder, HiFi-
GAN [15]. We optimized the network for 1 M iterations using
the Adam optimizer [16], whose learning rates and weight de-
cays were both 0.0001 on an NVIDIA 3090 GPU. We provide
our demo page containing synthesized samples.1

4.2. Neural networks and diffusion process
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Figure 2: Overall network architecture for the experiments
(Diff-TTS, CfGuided-TTS and PfGuided-TTS in Table 1).

The network architecture and configurations were the same
as those of Diff-TTS in [6], except for the PostNet, which com-
poses the mel decoder (Fig. 2). We investigated that the CBHG
(1D-Conv. Banks + Highway + bi-GRU) used in Tacotron’s
PostNet [17] worked well for the mel decoding than the Post-
Net used in Tacotron2 [1]; thus we used the same architecture
of CBHG for the PostNet. For the details, the input dimen-
sion, size of K, and projections for the convolutional and high-
way layer were set to 512, 8, 256, and 128, respectively. Sub-
sequently, the output dimension was linearly projected on the
number of mel bins. We used the diffusion steps T = 200 and
the linearly spaced variance schedule βt ∈ [5× 10−4, 0.1]. For
training the CfGuided-TTS, we replaced all the elements of the
text features with 0.01 for null conditioning with a 20% ratio.
For training the duration predictor, we used the Montreal forced
aligner [3]. Finally, the total number of parameters was 13.4 M.

4.3. Accelerated sampling
We adopted the accelerated sampling algorithm of [6] that was
motivated by [18]. Let S and Xt′1:t

′
S

denote the number of ac-
celerated sampling steps and the subsequence of the latent vari-
ables X1:T , respectively (Fig. 3). We set S = ⌈T/τ+1⌉, where
⌈·⌉ and τ denote the ceiling function and decimation factor, re-
spectively. We set t′s = T − (S − s)τ for integers 1 < s ≤ S
and t′1 = 1. Details for the accelerated sampling algorithm, it
is modified into:

Xt′s−1
=

√
ᾱt′s−1

ᾱt′s
(Xt′s −

√
1− ᾱt′sϵθ(Xt′s , y, t))

+
√

1− ᾱt′s−1
− σ2

t′s
ϵθ(Xt′s , y, t) + ησt′szt′s ,

(9)

where σt′s =

√
1−ᾱt′

s−1

1−ᾱt′s
βt′s . For s = 1, t′0 is 0.

1https://wgk.notion.site/Demo-Prior-free-Gui
ded-TTS-76c430174bc14df59fa077ba19b08bf2

Figure 3: A graphical example for the accelerated sampling
process when τ = 3. Gray circles depict the skipped steps.
Note that the step size could be smaller than τ for s = 2 when
T − 1 is not divisible by τ .

4.4. Evaluation

To evaluate the audio quality of TTS models, we used 5-scale
mean opinion score (MOS) tests with a 95% confidence inter-
val (CI) on 15 participants for subjective evaluation, and mea-
sured a character error rate (CER) using the pre-trained auto-
matic speech recognition model from the NEMO toolkit2 for
objective evaluation. In addition, we measured real-time factors
(RTF) on a single NVIDIA 3090 GPU to evaluate the inference
speed. Both the CER and RTF were measured for 500 sentences
composing the test set, and the MOS tests were performed for
30 and 20 sentences randomly chosen from the test set for the
experiments in Table 1 and 2, respectively.

5. Results
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Figure 4: Pitch tracks on different γ and η for the 6 differently
generated speech samples from the same sentence.

As shown in Table 1, both Cf and PfGuided-TTS generated
the higher quality audio than Diff-TTS. Interestingly, the clarity
(CER) was highest on CfGuided-TTS, but the human percep-
tual quality and naturalness (MOS) were highest on PfGuided-
TTS with the lower computational cost; even outperformed the
speeches vocoded from ground truth mel. In addition, the au-
dio qualities showed robust on the accelerated sampling when
τ = 4. Although the audio quality degraded when τ = 10,
MOS was still higher than other TTS models and RTF enhanced
a lot. Here, the optimal γ decreased with increasing τ for the
same reason that will be discussed in Section 6.

To investigate how the guidance scale and noise tempera-
ture affect the prosody variety, we extracted the pitch contours
with different γ and η. As already explored in [6], lower values
of η, correspond to lower diversity. However, PfGuided-TTS
generated speeches with more diverse prosodies than control-
ling the noise temperature. The toy example in Fig. 1 shows

2https://huggingface.co/nvidia/stt_en_conformer_ctc_large
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Figure 5: Schematic diagram of the sampling trajectories with and without guidances. We denote the notation ∇Xt−1(·) = ∇(·) for
brevity. All the score vectors are random variable but for simplification, we assume that ∇logpθ(Xt−1|Xt, y) always points in the di-
rection for the shortest path. (a) illustrates the distributions of score vectors. We express the ∇logpθ(Xt−1|Xt), and ∇logp(Xt|Xt−1)
as 3D vectors, but ∇logp̃γ(Xt−1|Xt, y) as 2D vectors for simplification. (b-d) illustrate the sampling trajectories on the simplified

data distribution. Note that σt =
√

1−ᾱt−1

1−ᾱt
βt <

√
βt for all t, thus guided sampling is always ahead of normal sampling in (d).

Table 1: Comparison of the different TTS models. Note that the
Diff-TTS is same to the γ = 1 for the PfGuided-TTS. We first
chose the optimal γ = 3 under CER, but after the MOS test
shown in Table 2, we found that the optimal γ also could be 2
respect to MOS.

Method MOS (CI) CER(%) RTF

GT 4.46± .044 1.01 −
GT (Mel + HiFiGAN) 4.23± .053 1.27 −
Tacotron2 4.13± .053 2.78 0.055
Glow-TTS (T = 0.333) 4.07± .056 3.83 0.005
Diff-TTS 3.94± .058 3.37 0.337
CfGuided-TTS (γ = 4.5) 4.10± .057 2.75 0.656

PfGuided-TTS (γ = 3) 4.39 ± .044 2.82 0.337
τ = 4, γ = 2.5 4.36± .044 2.83 0.087
τ = 10, γ = 2 4.25± .045 2.89 0.036
τ = 25, γ = 1.2 4.05± .054 2.88 0.017

Table 2: Comparison of the audio quality by the different guid-
ance scales of PfGuided-TTS.

Scale (γ) 1 2 3 5 7 10

MOS (CI) 3.98
±.06

4.49
±.04

4.40
±.04

4.26
±.05

2.97
±.06

1.15
±.02

CER (%) 3.37 2.91 2.82 3.00 3.21 4.49

that sample variance increased as γ increased. But, in practice,
controlling the diversity by modulating γ as a higher value is
difficult since the audio quality deteriorates drastically as γ be-
comes too higher (Table 2).

6. Discussions
In this section, we provide a schematic analysis to discuss
how the classifier- and prior-free guidance affect the sam-
pling trajectory. Figure 5 depicts the log-likelihood distribu-
tion of data X0 and expresses all score vectors of the distri-
butions p̃γ(Xt−1|Xt, y), pθ(Xt−1|Xt, y), pθ(Xt−1|Xt), and
p(Xt|Xt−1) as 2D or 3D vectors. Note that γ > 1 for guid-
ance, therefore 1 − γ < 0; thus, the direction of the vector is
reversed (Fig. 5 a).

The direction of ∇logp(Xt|Xt−1) is unbiased (i.e. com-
pletely random), but the direction of ∇logpθ(Xt−1|Xt) is bi-
ased to the data point X0|y since pθ(Xt−1|Xt) is trained to

maximize pθ(X0). During normal sampling (Fig. 5 b), Xt−1

reaches a relatively low density level (black dashed vertical
line on Fig. 5 b-d). However, if the score is guided, Xt−1

could reach the higher density level than normal sampling (blue
dashed-line on Fig. 5 c, d). With respect to diversity, the smaller
the variance of the Gaussian distribution is (i.e., low-diversity
distribution), the steeper the gradient of the log-likelihood is
(samples reach a higher density level per step). For these rea-
sons, the guided scores generate high-quality but low-diversity
samples; and if γ increases, the phenomenon is strengthened.

However, one question remains: why did the toy example
in Fig. 1 and the experimental results in Table 2 exhibited lower
sample quality when γ was too large? We described the tra-
jectory with a simple data distribution model for the analysis
in Fig. 5, but in practice, data has higher dimensions and more
complex distribution. In addition, we mentioned that the direc-
tion of ∇logp(Xt|Xt−1) was unbiased. Therefore, if γ is set
too large, Xt−1 could lose the way to the mode of X0|y (this
is similar to why a very high learning rate is not set when opti-
mizing the neural network). The same reason applies for the ac-
celerated sampling; the magnitude of the vector increases with
τ > 1, hence γ should be smaller than that of τ = 1. Therefore,
when sampling data using the proposed prior-free guidance, γ
should be carefully set depending on the tasks and total denois-
ing steps.

7. Conclusion
In this study, we introduced prior-free guidance, which gen-
erates high-quality samples without increasing computational
cost by numerically substituting the unconditional reverse pro-
cess with the forward process. PfGuided-TTS synthesized high-
quality speech while preserving the computational cost and
keeping high quality despite accelerated sampling. In addition,
using a schematic, we explained how the guided scores can gen-
erate a better sample quality. The guidance made the sample
reach a higher density level, but too large scale, the sample qual-
ity deteriorated.
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