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Abstract
The fact that unlabeled data can be used for supervised learn-
ing is of considerable relevance concerning polyphonic sound
event detection (PSED) because of the high costs of frame-
wise labeling. While semi-supervised learning (SSL) for im-
age tasks has been extensively developed, SSL for PSED has
not been substantially explored due to data augmentation lim-
itations. In this paper, we propose a novel SSL strategy for
PSED called resolution consistency training (ResCT), combin-
ing unsupervised terms with the mean teacher using different
resolutions of a spectrogram for data augmentation. The pro-
posed method regularizes the consistency between the model
predictions for different resolutions by controlling the sampling
rate and window size. Experimental results show that ResCT
outperforms other SSL methods on various evaluation metrics:
event-f1 score, intersection-f1 score, and PSDSs. Finally, we
report on some ablation studies for the weak and strong aug-
mentation policies.
Index Terms: sound event detection, semi-supervised learning,
data augmentation, multi-resolutional training

1. Introduction
Polyphonic sound event detection (PSED) detects whether pre-
defined target sounds appear in an audio signal. PSED is di-
vided into two types according to the detection level: weak and
strong target detection (also called clip- and frame-level, respec-
tively). Strong target detection has the advantage that the sys-
tem could make the target sounds appear or not frame-by-frame.
However, the frame-wise labeling of this detection type incurs
a high cost. For this reason, most PSED systems are trained
under semi-supervised learning (SSL) methods.

SSL is a learning strategy that effectively uses unlabeled
data for training when labeled data are limited. Consistency
regularization training (CRT) is an SSL approach that aims to
optimize a system to predict similar results under the mani-
fold assumption using a few perturbations on data or a model.
For recent PSED, mean teacher (MT) [1] that uses a teacher-
student structure for unlabeled data points is a widely used CRT
method [2–7]. Furthermore, MT is variously expanded by com-
bining data augmentation methods, such as the random con-
sistency training (RCT) [2], interpolation consistency training
(ICT) [6], and shift consistency training (SCT) [7].

In the vision and language processing task, other CRT
methods have been developed: unsupervised data augmenta-
tion (UDA) [8] and FixMatch [9], which regularize consistency
using data augmentations and artificial labels on a single net-
work. Both strategies result in similar class distributions be-
tween weakly (or non-) and strongly augmented data. Empirical
studies showed that RandAugment [10], CTAugment [11], and
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Figure 1: Differences of log-mel spectrograms according to only
controlling sampling rates (Left) and window sizes (Right).

AutoAugment [12] perform well as strong augmentation poli-
cies in image classification, and back translation [13] has been
effective for text classification. Recently, the RandAugment-
like method, RCT, has been conquered in audio task, but has
not been explored with the CRT between weakly and strongly
augmented data. Grollmisch et al. [14] compared augmenta-
tion methods for FixMatch-based clip-level audio classification.
However, these augmentation methods were severely distorted
in time domain target (e.g., rotation, SpecAugment [15], etc.);
thus, it is hard to adopt in PSED.

This study proposes a novel SSL strategy for PSED, res-
olution consistency training (ResCT), which smooths deci-
sion boundaries using different time-frequency resolutions by
combining MT and FixMatch structures. Multi-resolution ap-
proaches have been explored in many audio tasks, such as
PSED, speech enhancement, and neural vocoder for design-
ing model fusion [16], progressive generative model [17], and
joint training scheme [18], respectively, using different sam-
pling rates, window sizes, or frame shift sizes. Different from
the previous studies, this work explores multi-resolution aug-
mentations to regularize consistencies to temporal and spectral
perturbations among the different time-frequency resolutions.

A digital signal has limited frequency bands according to
sampling rates, and a spectrogram has different time-frequency
resolutions depending on window sizes. Based on these proper-
ties, ResCT adopts a weak augmentation as different sampling
rates and a strong augmentation as different sampling rates and
window sizes with stochastic values. Also, we reform the train-
ing procedure by combining MT and FixMatch methods, which
consist of supervised, unsupervised, and teacher-student terms
for effective ResCT using the proposed augmentation policies.

The experimental results show that the proposed method
surpassed the other SSL strategies especially on detection the
onset and offset of targets. Also, we compared the performances
of the different strong augmentation strategies: the proposed
method and the extant augmentations. At the end of this pa-
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Figure 2: Spectral analysis over six frames near the onset of an
event. The spectrums over the red boxes are of event inactive
frames, and below the red boxes are of event active frames. Re-
gardless of the window size, trends of the spectrums are similar
except for the onset interval. In this analysis, µref was 128 ms.

per, we discuss the most effective multi-resolution augmenta-
tion policy through some ablation studies.

2. Consistency regularization training
2.1. Consistency training with a single network

UDA and FixMatch are well-known CRT strategies using a sin-
gle network. Both use unlabeled data to enforce consistency
between raw or weakly and strongly augmented data points (un-
supervised term, Lusp) while producing the decision boundary
using labeled data (supervised term, Lsup), making unlabeled
data useful.

Ltotal = Lsup + Lusp. (1)

For example, in an image, simple cropping, flipping, or shifting
augmentation is used for weak augmentation, and RandAug-
ment, CTAugment, or AutoAugment is used for strong aug-
mentation. Note that although the strong augmentation makes
data distortion difficult, the data labels should not be distorted
severely.

2.2. Consistency training with teacher-student networks

MT is a teacher-student training approach in which only the
student network is trained, and the teacher network is updated
with an exponential moving average (EMA) of the student’s pa-
rameters at every training step (i.e., the teacher is not updated
with backpropagation). The following two loss terms are used
to train the network:

Ltotal = Lsup + r(t)LTS , (2)

where Lsup, LTS , and r(t) denotes the supervised loss between
the outputs and targets of the student network, consistency loss
between the teacher and student network outputs, and the ex-
ponential ramp-up function, respectively. The consistency loss
term makes the decision boundary smoother by regularizing the
perturbation of the model and data points.

By combining the data augmentation methods and MT, im-
proved consistency learning methods have been proposed: ICT,
SCT and RCT. ICT maintains the consistency between the stu-
dent’s output of a mixed data point and the mixed teacher’s out-
put for image classification. Similarly, SCT maintains the con-
sistency between the student’s output of a frame-shifted data
point and the frame-shifted teacher’s output for PSED. RCT
maintains the consistencies using a hard mixup and an audio

warping. The audio warping is randomly chosen among time
shift, time mask, and pitch shift.

3. Resolution consistency training
In this section, we introduce ResCT, which regularizes the
model to create a consistent prediction of the same audio signal,
even if the resolutions of the hand-crafted features are differ-
ent. The main proposals follows: first, we propose a policy of
multi-resolution augmentation for CRT. For consistency train-
ing, we leverage two variables when extracting a spectrogram:
the sampling rate and window size, which could make spectral
and temporal perturbations. The maximum frequency of a dig-
ital signal is limited to half the sampling rate; hence, if audio
is down-sampled, the high-frequency band narrows. If we con-
sider a spectrogram as an image, this manipulation is similar to
image padding, cropping, and stretching augmentation (Fig. 1.
Left). When extracting the spectrogram from a waveform, the
spectral resolution is higher if a window is longer, but the time
resolution worsens; in other words, temporal perturbations arise
(Fig. 1. Right, Fig 2). If the scenario is vice versa, spectral
perturbations arise. These temporal and spectral perturbations
could smoothen a decision boundary for both time (detecting
either onset, ongoing, or offset) and target events.

Second, we optimize the network by adopting both MT
and FixMatch structures. The proposed ResCT comprises three
terms to utilize the unlabeled data: supervised, unsupervised,
and teacher-student terms (Fig. 3). The following subsections
describe the details of the policy of leveraging a sampling rate
and window size and the three terms mentioned above.

3.1. Multi-resolution policy for consistency training

Sampling rates and window sizes for the augmentation are sam-
pled from a log-Gaussian distribution in which the mean and
standard deviation are logarithmic values of the reference val-
ues (i.e., non-augmented data) and distortion ratios on a Gaus-
sian distribution, respectively.

lnx ∼ N (ln µref, (ln r)2), (3)

where x, µref, and r denote the random variable, reference
value, and ratio, respectively. For example, if µref and r of the
window size are 128 ms and 2, the probability that the random
variable x is sampled from 64 ms to 256 ms is approximately
68.27%.

The spectral analysis depicted in Fig. 2 shows how much
the temporal perturbations arise near the onset of an event ac-
cording to the ratio. If the window size is eight times the hop
size, only a frame had perturbations when the ratio was 1.25.
Therefore, in this study, the reference value of window size and
ratio were set at 128 ms and 1.25, respectively. In addition, the
reference value of the sampling rate and ratio were empirically
set at 16 kHz and 1.25, and we clipped all sampled values on
half and twice ratios to prevent severe distortions.

3.2. Resolution consistency training

On the supervised term of ResCT, the network is trained with
different-resolution spectrograms having the same label. The
unsupervised term regularizes the consistency between weakly
and strongly augmented data, which have different multi-
resolution policies. The teacher-student term regularizes the de-
tection probabilities between the teacher and student networks
on the same strongly augmented data. Let (l, y) ∈ L and u ∈ U
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Figure 3: Overall structure of resolution consistency training.

be the labeled dataset and unlabeled dataset respectively, where
l, y, and u denote a labeled sample, label, and unlabeled sam-
ple, respectively. The loss function of ResCT comprises three
loss terms: a supervised loss Lsup, unsupervised loss Lusp, and
teacher-student loss LTS . First, Lsup is just the binary cross-
entropy (BCE) loss on the strong-augmented labeled data:

Lsup = H(fw(lA), yw) +H(fs(lA), ys), (4)

where f(·), H(·), and the subscripts A, w and s represent the
student network, BCE, and the strongly augmented data, clip-
and frame-level, respectively. In contrast, Lusp is the BCE loss
on strong-augmented unlabeled data:

Lusp = H(fw(uA), f̄w(uα)) +H(fs(uA), f̄s(uα)), (5)

where f̄(·) and the subscript α denote the frozen student net-
work and weakly augmented data, respectively. Herein, the pre-
diction of uα plays a role as an artificial label for the unlabeled
sample. Lastly, LTS is the mean squared error (MSE) loss be-
tween the predictions of teacher and student networks:

LTS =E||fw(lA)− ḡw(lA)||2 + E||fs(lA)− ḡs(lA)||2+
E||fw(uA)− ḡw(uA)||2 + E||fs(uA)− ḡs(uA)||2,

(6)

where ḡ(·) is the MT network for the student. The total loss is
obtained by summing the three loss terms as follows:

LTotal = Lsup + Lusp + r(t)LTS . (7)

4. Experiments and Results
4.1. Dataset and experimental setup

The DESED database1 was used for evaluating our proposed
method. It consists of real recordings from Audioset [19] and
synthetic audios, and each audio is labeled on the frame-level,
clip-level, or unlabeled. The details of the size of the dataset
are shown in Table 1. Each audio clip was 10 s long with either
44.1 kHz or 16 kHz and had ten predefined target sounds.

For the experiments, each audio was down-mixed to 16
kHz. Subsequently, we extracted the reference log-mel spec-
trograms and the corresponding strong labels with the window
size, shift size, and mel-filter banks with 128 ms, 16 ms, and
128, respectively. We optimized the networks with an AdamW
[20] optimizer, and the weight decay was 0.001. The learn-
ing rate was exponentially warmed up to 0.001 for the first 50

1https://dcase.community/challenge2022/task
-sound-event-detection-in-domestic-environment
s

Table 1: Details of the number of audio clips of the DESED. (·)
denotes the number of batch size. (R: real, S: synthesized audio)

Split Frame-level Clip-level Unlabeled

Train R: 3,470 (8), S: 10,000 (8) R: 1,578 (4) R: 14,412 (40)

Eval. R: 1,168 - -

Table 2: Specification of the CNN part of EffiCRNN. Except
for the first layer of each stage, the filter sizes and strides were
(3x1) and (1, 1).

Stage Operator #Channels Stride #Layers

0 Conv 5x5 16 (1, 1) 1
1 Fused-MBConv1 3x3 24 (2, 2) 2
2 Fused-MBConv4 3x3 32 (2, 2) 4
3 Fused-MBConv4 3x3 48 (2, 1) 4
4 MBConv4 3x3 64 (2, 1) 4
5 MBConv4 3x3 128 (2, 1) 4
6 MBConv4 3x3 128 (2, 1) 4
7 Avg. pool & Conv 1x1 128 (1, 1) 1

epochs and annealed to 0 for the other 50 epochs. Regardless
of the weak and strong augmentation, the mixup was applied.
Convolutional recurrent neural network (CRNN) was used for
the network. We substituted the CNN part of the DCASE chal-
lenge baseline [21] with EfficientNetv2 [22] (EffiCRNN). The
detailed structure of CNN is described in Table 2. The total
number of parameters was 2.15 M.

4.2. Evaluation metrics

For the validation of PSED systems, we used four metrics:
event-f1 score [23], intersection-f1 score, and the polyphonic
sound detection score (PSDS) [24] with two settings. Event-f1
score is a collar-based evaluation metric to validate the onset
and offset of detected sounds. PSDS is AUC of polyphonic
sound detection ROC curve [24], which validates how much
the detected sounds overlapped with the ground truth. Also,
the intersection-f1 score is PSDS metric-based f1 score used in
DCASE challenges1. The intersection tolerance of the PSDS1
was higher than that of PSDS2; therefore, the PSDS1’s criteria
were more severe so it could evaluate how correctly the system
detects timestamps [25, 26]. All settings for metrics were the
same as the recent DCASE challenge task 41.

4.3. Comparison to other methods

To validate the superiority of the proposed method, we com-
pared it with other SSL methods (Table 3). ResCT outper-
formed the others on all scores except the PSDS2. Importantly,
the event-f1 score and PSDS1 were notably enhanced. It demon-
strates that a few temporal perturbations increase robustness of
how the system captures the onset and offset of detected sounds
during temporal ResCT [25,26]. In addition, as shown in Fig. 4,
ResCT was effective in alleviating overfitting. In other words,
the decision boundaries become smoother than that of other
SSL strategies.

The proposed multi-resolutional augmentations were com-
pared to other augmentations that did not significantly distort
the temporal labels (Table 4). Among the single augmenta-
tions, the proposed method generally outperformed other aug-
mentations. When the proposed method was combined with fre-
quency masking, the performance improved for event-f1 score
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Table 3: Detecting performances for the different SSL strate-
gies. FixMatch and UDA used the same proposed augmentation
method of the ResCT. The thresholds for the confidence based
masking of FixMatch and UDA were set to 0.9 for activated
frames, and 0.1 for inactivated frames. Also, the temperature of
sigmoid for sharpening was set to 0.4 for UDA. The configura-
tions of RCT were the same as in [2]. (Inter.-f1: intersection-f1)

Methods Event-f1 Inter.-f1 PSDS1 PSDS2

Supervised 32.50 54.74 15.32 25.15

MT 47.42 72.97 35.1 61.59
UDA 46.39 70.65 32.15 54.83

FixMatch 47.55 69.96 32.43 54.93
ICT 46.45 68.98 34.03 59.09
SCT 49.10 72.70 36.49 59.91
RCT 48.13 73.27 34.62 65.32

ResCT 52.28 74.88 37.69 61.26

and PSDS1, whereas the Gaussian noise was less effective.

4.4. Ablation studies

We investigated which combination and sampling distribution
would be better for the ResCT. The performances according to
the combinations of resolution policies are shown in Table 5.
Typically, controlling the sampling rate to the weak augmen-
tation had better performance than controlling the window size.
In other words, the weak augmented data roles an artificial label
for the unlabeled data; thus, controlling the window size could
produce inconsistent temporal labels.

Further, how much the spectrogram should be distorted for
the ResCT is shown in Table 6. We experimented with three
probability distributions; log-Gaussian, Beta (0.5, 0.5) and uni-
form distributions (the difference in probability density func-
tions of the three distributions is shown in Fig. 5). The Gaus-
sian distribution had the best performance, but that of the Beta
distribution was the worst (even worse than the other methods
shown in Table 3); these performances demonstrate that fewer

Table 4: Detecting performances for the different strong aug-
mentation policies. Res., FM and GN denotes the proposed
policy, frequency masking and adding Gaussian noise. The size
of masking was under 20 bands, and the Gaussian noise was
randomly added from 6 to 30 SNRs.

Augmentation Event-f1 Inter.-f1 PSDS1 PSDS2

Res. 52.28 74.88 37.69 61.26
FM 50.46 73.20 37.52 61.45
GN 48.49 71.15 35.26 58.34

Res. + FM 53.03 74.75 37.79 59.76
Res. + GN 51.65 74.42 36.88 60.46

Res. + FM + GN 51.8 74.02 38.31 61.71

Table 5: Ablation study on different resolution policies for
weak- and strong-augmentation. We controlled the combina-
tions so that strong augmentations became more distorted than
weak ones. (Win: Window sizes, Sr: Sampling rates)

Weak Strong Event-f1 Inter.-f1 PSDS1 PSDS2

- - 49.61 71.21 33.54 52.89
- Sr 49.82 71.83 34.55 56.22
- Win 49.38 71.58 33.09 53.17
- Sr+Win 49.37 72.03 35.18 56.15

Win Sr 50.39 70.09 36.00 57.14
Win Sr+Win 49.24 71.56 35.41 55.47
Sr Win 51.78 74.50 37.48 60.03
Sr Sr+Win 52.28 74.88 37.69 61.26

Table 6: Ablation study on sampling policies from different
probability distributions for weak- and strong-augmentation.
Compared to the uniform distribution, the density of the Gaus-
sian is high at the center, but that of Beta is high at both ends.

Distribution Event-f1 Inter.-f1 PSDS1 PSDS2

Log-Gaussian 52.28 74.88 37.69 61.26
Log-Beta (0.5, 0.5) 41.99 66.15 31.59 48.06

Log-uniform 46.05 67.41 33.25 53.28

perturbations made decision boundaries smoother, but too many
perturbations created too many distortions to regularize consis-
tency and mismatch with the ground truth, degrading perfor-
mance.
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Figure 5: Probability density functions (PDF) for log-uniform,
Gaussian, and Beta (0.5, 0.5) distribution. For the log-
Gaussian PDF, most of the observations cluster around the
mean; however, for the log-Beta (0.5, 0.5) PDF, the probabil-
ities for values are higher further from the mean.

5. Conclusion
In this study, we introduced ResCT, which makes model predic-
tions consistent across multi-resolutions with an unsupervised
term combined MT algorithm. The time and frequency resolu-
tions of a spectrogram were changed by controlling sampling
rates and window sizes. We demonstrated that a little temporal
and spectral noise made the PSED system more robust, espe-
cially in detecting the onset and offset of sound events. In ad-
dition, we expect that the ResCT’s structure and proposed aug-
mentation methods could be further developed by combining
with other SSL methods.
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[24] Ç. Bilen, G. Ferroni, F. Tuveri, J. Azcarreta, and S. Krstulović,
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