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Abstract
When a keyword spotting system is deployed on heavily per-
sonalized platforms such as digital humans, a few issues oc-
cur such as 1) a lack of training data when registering user-
defined keywords, 2) a desire to reduce computation and mini-
mize latency, and 3) the inability to immediately train and test
the keyword-spotting model. We address the issues through 1) a
keyword-spotting system based on a speech embedding model,
2) streamable system with duplicate computations removed, and
3) real-time inference in a web browser using WebAssembly.
Index Terms: Enrollable keyword spotting, Streamable model,
Speech embedding model, WebAssembly, Low latency

1. Introduction
Digital human modeling is rapidly growing, and it can revolu-
tionize many industries [1]. Personalized digital humans require
the user-defined keywords as name-like calls for smooth inter-
action with humans. Therefore, an enrollable Keyword spotting
(KWS) system is required. However, when such systems are
operated on a personal device, the following issues occur: 1)
Insufficient training data arises in creating a KWS model that
can recognize each digital human by their unique name-like and
user-defined keyword. 2) Generating a lightweight keyword-
spotting model that can operate in real-time even under heavy
load conditions, such as 3D rendering, speech recognition, and
speech synthesis. 3) Difficulty in immediately training and test-
ing the proper functionality of the KWS model.

To address these issues, this study proposes a fast enrol-
lable streaming keyword spotting (FES-KWS) system utilizing
speech embedding, which can be immediately tested via web
browsers using WebAssembly (Wasm).

2. Related works
Keyword spotting has become widely known through voice-
activated commands such as “Hey, Siri” and “OK, Google” [2].
To provide consistent performance for all users, these models
use a large number of collected voice samples as training data
[3]. This approach is not appropriate for implementing a user-
defined keyword spotting system. Therefore, a few or zero-shot
models have been developed to learn user-defined keywords by
using high-level speech features through a pretrained embed-
ding model [4, 5]. Despite the fact that high-performance pre-
trained models use transformers, building a streamable KWS
model is challenging due to their fixed structure [6]. In this
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Figure 1: Input layer of a streamable speech embedding model.

study, we introduced the process of converting a publicly avail-
able CNN-based speech embedding model into a streamable
model and fast-lightweighted using TensorFlow Lite (TFLite).
Additionally, we demonstrated a system that enables instant
training and inference of the FES-KWS model in a web browser
via Wasm.

3. Proposed Method
In this section, we describe the process of building an FES-
KWS model with a speech embedding model. Additionally, we
introduce the method of training and running the model using a
web browser.

3.1. Building an FES-KWS model

Lin et al. proposed a one dimensional (1D) CNN-based speech
embedding model,1 which generates a speech embedding vector
(SEV) from an initial 775 ms of speech, and subsequently gen-
erates additional vectors at 80 ms intervals with batches of input
and output [4]. The disadvantage of obtaining a SEV every 80
ms for streaming audio input is that redundant calculations oc-
cur for approximately 695 ms (775 ms–80 ms). Therefore, we
rebuild the model via Keras to store these redundant calcula-
tions into memory and reuse them for the next SEV calculation.

Figure 1 shows the structure of the input feature and pro-
vides information for removing redundant computations. The
input feature of this model is a mel-filter bank with a window
size of 400 ms, a shift window of 160 ms, and 32 mel bins. The
blue area represents the part where the existing computation re-
sults can be reused when calculating the SEV for the next frame,
which can be obtained after 80 ms. The yellow area represents
the region that is previously calculated with zero padding in a
previous frame, depending on the size of a convolution filter.

1Detailed information is in “https://tfhub.dev/google/speech embed-
ding/1” using TensorFlow’s “import pb to tensorboard.py.”
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Figure 2: Workflow of FES-KWS training and inference.

Therefore, the calculation should be revised. Finally, the red
area that represents the mel-feature obtained by concatenating
the last 15 ms of the previous frame’s audio with the newly in-
putted 80 ms, should be computed.

To eliminate redundant computations, the model has been
modified to return blue regions for each layer. For the next
frame, we generated SEV by concatenating the reusable regions
returned after calculating only the yellow and red regions that
require recomputation. This embedding model can reduce com-
putational cost by employing only 1×3 or 3×1 convolution fil-
ters up to the final layer. By attaching a small head model to
the restructured streamable speech embedding model as afore-
mentioned, the FES-KWS model can be trained with only one
speech sample of user-defined keywords [4].

3.2. Instant model training and inference via a web browser

In this section, we describe how to train and inference the FES-
KWS model instantly in a web browser with the rebuild model.

By utilizing the AudioWorklet of the Web Audio API, an
audio input received through a microphone in a web browser
can be accessed. Using this, we can receive a speech sam-
ple of user-defined keywords through a microphone and start
the learning process by sending it to a training server. The
received positive samples, randomly extracts negative samples
from speech corpora, and approximately 200 noise clips are
used as training data. The model is trained with noise aug-
mentation from SNR 20 to 0 dB, speed augmentation ranging
0.8–1.2x, and pitch shift ranging -2–2 semi-tones. The training
time is within 10 s on CPU. The completed FES-KWS model is
transmitted to a web browser and used as an inference model.

To perform inference on TFLite models in a web browser,
a TFLite library built with Wasm is required. Wasm is a com-
pact and efficient binary package that can be executed in web
browsers. With the Emscripten toolchain to build FES-KWS
inference code written in C/C++ and TFLite static library into
Wasm, FES-KWS can be run in a web browser. By passing
the audio obtained to the FES-KWS AudioWorklet, streaming
inference can be performed on an audio stream.

4. Results
The method reduced redundant calculations for approximately
90 % of overlapping areas between adjacent frames, resulting
in a 33.4% increase in processing speed on CPU. Additionally,
the Keras model can be converted to a TFLite model, which
was not possible with the original “pb” model from TensorFlow
Hub, and it obtained an additional approximately 340x speed-
up.

Figure 2 shows a flowchart of the aforementioned training
and inference methods. During the training phase, a speech
sample for a user-defined keyword was inputted through a web
browser, and the FES-KWS model was generated on a training
server using the method described in Chapter 3.1. During the
inference phase, the presence of the user-defined keyword in an
audio stream was determined using the model with the Wasm
package, described in Chapter 3.2.

For performance evaluation, we used a self-made database
consisting of recordings of “NC–ya” (hey, NC) keyword from
200 people, each six times. One of the audio file was used as a
training phase, while the others were used as test sets. In cases
where the speaker is consistent, the recognition success rate was
measured at 99.3 % in an SNR 20 dB environment, while in
the cases where the speaker was different, it was measured at
93.1 %. Although the speech embedding model was trained
on English, it works reasonably well in Korean as well. The
synthetic speech of 112 virtual speakers was used as training
data to improve performance with different speakers. However,
the performance slightly improved to 94.1 %.

5. Future works
To address false alarms, effective strategies are required by sim-
ilar pronunciation speech to user-defined keywords. We ex-
plored speech clips with similar pronunciation in natural lan-
guage and used them as negative samples for training data. Ad-
ditionally, we reduced the number of speech samples required
for the learning process. However, requiring input through a mi-
crophone is still inconvenient. Our goal is to research zero-shot
KWS to address these issues.
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