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Abstract
Sound source localization and tracking have been extensively
studied. Recently, there has been considerable interest in highly
reverberant scenarios and steered response power with phase
transform (SRP-PHAT) based models have shown a good per-
formance. However, these models still have limitations because
the SRP-PHAT algorithm cannot represent the direction of the
source in such adverse environments. In this paper, we pro-
pose a novel structure combining a super-resolution model and
a single sound source localization model that allows to improve
direction estimation performance. The proposed method gener-
ates a robust power map that accurately represents the direction
of the source, even in poor scenarios. Furthermore, the pro-
posed structure has a lower computational cost because it uses a
low-resolution map. Experimental results on simulation-based
and real-world data show that the proposed method outperforms
the state-of-the-art model, Cross3D.
Index Terms: SRP-PHAT, sound source localization and track-
ing, image super-resolution

1. Introduction
Sound source localization (SSL) involves estimating the
direction-of-arrival (DOA) of a sound source by analyzing
multi-channel signals captured by a microphone array. SSL is
widely used in various real-world applications, such as robot-
human interaction and multichannel-based speech separation,
speaker diarization, and speech recognition [1–3]. Traditional
signal processing-based algorithms, such as generalized cross-
correlation (GCC) [4], multiple signal classification (MUSIC)
[5, 6], and steered response power with phase transform (SRP-
PHAT) [7], are widely used for DOA estimation. Recently, SSL
based on various deep learning models, such as deep neural net-
work (DNN) [8], convolutional neural networks (CNNs) [9,10],
and convolutional recurrent neural networks (CRNNs) [11, 12],
has been proposed. Signal-processing-based features such as
GCC [13] and phase spectrogram [12] are used as input fea-
tures for deep-learning-based DOA estimation with CNNs and
CRNNs [9–12]. These methods demonstrate superior perfor-
mance compared with traditional methods. However, they have
limitations in scenarios with severe reverberation and noise,
which are common in real-world environments.

Diaz-Guerra et al. [14] proposed 3D CNN-based Cross3D
which is a deep learning model based on SRP-PHAT for SSL
and tracking, and this model is shown robustness against noise
and reverberation. The SSL model based on SRP-PHAT per-
formed well because the input spectrum had high-quality spa-
tial details. However, the SRP-PHAT algorithm has a drawback
in that it can not precisely indicate the DOA of the source in
a noisy and reverberant environment, which limits the perfor-

Figure 1: Overview of the proposed method. LR, HR, and SR
are low-resolution, high-resolution, and super-resolution maps,
respectively. The red dot indicates the actual DOA of the sound
source and the black dot indicates the maximum point of the
map.

mance of the SRP-PHAT-based models. In particular, as the
resolution of SRP-PHAT increases, the impact of noise and re-
verberation also increases. Furthermore, the experimental re-
sults of Cross3D showed that the performance is not improved
significantly even if the resolution of the power map increases
in such poor situations [14].

In this study, we show that a novel structure SR-SRP that
generates robust feature maps can achieve better DOA estima-
tion performance even in poor scenarios. The proposed SR-SRP
is an end-to-end structure that combines a super-resolution (SR)
model with an SRP-PHAT-based SSL and tracking model. The
SR model plays a role for generating a spatial spectrum that
can accurately indicate the DOA of the source to overcome the
limitation of SRP-PHAT. This model consists of a CNN and
transposed CNN and uses a low-resolution (LR) map as an in-
put feature for maintaining the characteristics of SRP-PHAT.
The improved spatial feature map, called the SR map, is used as
input to the SSL and tracking model Cross3D. We also propose
an argmax loss function that improves the spatial characteris-
tics of the SR map. In addition, the proposed method has a
low computational cost for the SRP-PHAT algorithm because
it uses the LR map as an input. We trained and validated with
LibriSpeech [15] and gpuRIR-based [16] simulation data in the
same manner as Cross3D and then tested with the localization
and tracking (LOCATA) dataset [17]. Consequently, the high
peak of SR map indicates the direction of the source well than
the SRP-PHAT based high-resolution (HR) map, and SR-SRP
outperforms the DOA estimation performance of Cross3D. In
particular, our method yields significantly better performance
in an environment with severe noise or reverberation in terms
of root-mean-squared angular error (RMSAE).
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2. Related Works
2.1. SRP-PHAT algorithm

Assuming that there are time-domain signal x(t) and M micro-
phones, the signals recorded by the mth microphone, sm(t) can
be expressed as follows:

sm(t) = x(t) ∗ hm(Ωs, t) + vm(t), (1)

where Ωs, hm(Ωs, t), and vm(t) denote the DOA of the sound
source, the impulse response from Ωs to the mth sensor, and
the white Gaussian noise signal, respectively. Additionally, Ω
is expressed in terms of azimuth ϕ ∈ [−π, π] and elevation θ
∈ [0, π]. The SRP-PHAT algorithm is a beamformer-based ap-
proach that searches for the maximum values in a predefined
space Ω.

Ω̂s = argmax
Ω

P (Ω), (2)

where Ω̂s is the direction of the maximum SRP, and P (Ω) is
the SRP which is expressed in the sum of Rm1,m2(·), which
denotes GCCs of microphones m1 and m2.

P (Ω) = 2π
M∑

m1=1

M∑

m2=1

Rm1,m2(△τm1m2(Ω)), (3)

Rm1,m2(τ) =
1

2π

∫ π

−π

Φm1,m2(ω)Sm1(ω)S
∗
m2

(ω)ejωτdω,

(4)
where S(ω), ∗, and τ are the Fourier transform of s(t), com-
plex conjugate, and time difference, respectively. Furthermore,
Φm1,m2(ω) is the phase transform, defined as Φm1,m2(ω) =

1/|Sm1(ω)S
∗
m2

(ω)|. Herein, Ω̂s is calculated by all P (Ω) in a
predefined space. Therefore if the resolution of the search space
increases, the computational cost also increases.

2.2. Single image super-resolution

Originally, the single image super-resolution (SISR) [18] task
played a role in restoring an LR image to an HR image, and
was classified into interpolation-based and deep learning-based
methods. Interpolation-based SISR [19] can perform upsam-
pling quickly and straightforwardly, but has the disadvantage of
poor image recovery performance. A CNN-based SISR [20] has
been proposed to overcome the aforementioned disadvantages,
and its performance was significantly better than previous meth-
ods. In addition, architecture that uses deconvolution [21] and
pixel shuffle [22] have been proposed. These architectures re-
duce the amount of computation and improve performance. The
loss function used in SISR depends on the specific purposes of
the models and the characteristics of the input features. The
loss function is defined in various ways such as pixel [20], con-
tent [23], and texture losses [24]. In this study, we intend to
upsample and enhance the spatial spectrum and propose suit-
able objective functions for that goal.

3. Proposed Method
In this section, we introduce the architecture of the proposed
SR-SRP. The SR-SRP comprises two models: SR and SSL (Fig.
1). In the following subsection, we describe the SR model in
detail, which is the main contribution of this study, and a short
description of the Cross3D [14] used as the SSL model.

Figure 2: Model architecture of SR model. Example of upsam-
pling power map from 8 × 16 to 32 × 64. The left branch of
the model is the reconstruction layer, and the right branch is the
feature extraction layer.

3.1. Super-resolution model

Let X ∈ RH×W denotes the SRP-PHAT power map, where H
is the resolution of the elevation and W is the resolution of the
azimuth. The SR model comprises feature extraction and re-
construction layers, and the maps are passed into a CNN-based
feature extraction layer and transposed CNN-based reconstruc-
tion layer. The feature extraction layer consists of Nc CNN
blocks, a transposed CNN with a scale of 2, and a CNN with a
single kernel of size 3 × 3. The CNN blocks contain circular
padding [25], a CNN with 64 kernels of size 3 × 3, and a recti-
fied linear unit (ReLU) [26]. The reconstruction layer consists
of only a transposed CNN with a scale of 2, and X′ ∈ R2H×2W

is generated by adding it to the output of the feature extraction
layer. The SR map X′′ ∈R4H×4W is then generated by upsam-
pling with a transposed CNN with a scale of 2. We use circular
padding to solve the discontinuity problem for the power map
and prevent information loss when using another padding. For
circular padding, on the azimuth axis, the left side of the power
map is mapped to the right, and vice versa. On the elevation
axis, the top left is mapped to the top right, and vice versa.

To earn a power map that has accurate spatial information
based on the LR map, we use two types of objective functions
in the training process of the SR model: SR loss and argmax
loss. The SR loss, which is commonly used in SISR, measures
the mean squared error (MSE) loss between the HR and the SR
maps such that

LSR =
1

N

N∑

n=1

(Yn −X ′′
n)

2, (5)

where Yn, X ′′
n , and N are the HR map, the SR map, and the to-

tal number of frames, respectively. The SR loss function helps
maintain the characteristics of the SRP-PHAT algorithm dur-
ing the upsampling process. However, the primary objective
is to generate a feature map containing clear spatial informa-
tion. Therefore, we propose an argmax loss function that can
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further enhance the power map. The argmax loss is the mean
absolute error between the maximum position of the SR map
and the actual source location yn in the Cartesian coordinates.
The argmax function is usually used to determine the maximum
position of the map; however, the argmax function is nonlinear
and non-differentiable. Thus, we use the softmax-based soft-
argmax function [27].

σ(Xi,j) =
eβXi,j

∑H
k=1

∑W
l=1 e

βXk,l
, (6)

where σ(·) is the softmax operation, β is the softmax weight
and Xi,j is the value of power map at location (i, j).

Ψd(X) =
H∑

i=1

W∑

j=1

Pi,j,dσ(Xi,j), (7)

where Ψd(·) is the soft-argmax function, d is a given compo-
nent ϕ or θ and Pi,j,d ∈ RH×W is a two-dimensional discrete
normalized ramp. In addition, d = ϕ, then Pi,j,ϕ = i/H and
d = θ, then Pi,j,θ = j/W .

Largmax =
1

N

N∑

n=1

|f(yn)− f(Ψϕ(X
′′
n),Ψθ(X

′′
n))|, (8)

where f(·) is the transformation function of the spherical to
cartesian coordinates. Via argmax loss, the SR model is trained
to minimize the DOA error of the SR map and improve the spa-
tial property.

3.2. Sound source localization and tracking model

We use Cross3D as the SSL and tracking model. Cross3D is
a 3D CNN-based model, and X̃ ∈ R1×T×4H×4W is input to
Cross3D, where T is the number of time frames. Cross3D uses
three-channel maps constructed by concatenating feature maps
with a tensor of the same size that indicates the maximum po-
sition value. This approach is inefficient; however, Cross3D is
claimed to be the easiest way to convey the characteristics of
SRP-PHAT. However, SR-SRP estimates the DOA using learn-
able feature maps produced in the SR model; therefore, this pro-
cess is unnecessary and uses only a single-channel map.

Finally, we use objective functions that perform the
weighted sum of the three loss terms in the training process.
The LDOA is the MSE loss between the estimated and actual
DOA of the source. The overall loss is configured as follows:

Ltotal = w1Largmax + w2LSR + LDOA, (9)

where w1 and w2 are weighting factors. In this study, we set
them to 0.1, which is the optimal value obtained through re-
peated experiments.

4. Experiments
4.1. Datasets

We used the LibriSpeech [15] and LOCATA [17] datasets, and
maintained the same conditions and procedure as the data con-
struction method of Cross3D for a comparison. In the train-
ing and validation processes, we used simulated single moving
source data based on the LibriSpeech corpus, particularly train-
clean-100 for training and test-clean for validation, and gener-
ated room impulse responses (RIRs) with gpuRIR. For the de-
tails of the RIR data generation parameters, array geometry was

Figure 3: Result comparison of LR, HR, SR, and ideal maps. (a)
the power maps of SNR = 30 dB and T60 = 0.6 s (b) the power
maps of SNR = 5 dB and T60 = 0.9 s.

set to be the same as the NAO robot head 12-channel array, the
room size was 3×3×2.5 m3 to 10×8×6 m3, the reverberation
time (T60) was 0.2 s to 1.3 s, and the signal-to-noise ratio (SNR)
was 5 dB to 30 dB. In addition, we used a LOCATA dataset for
the test. Specifically, we used tasks 1, 3, and 5, which were the
static microphone and source, static microphone and moving
source, and moving microphone and source, respectively. In
addition, to prevent tracking errors in situations where speech
does not exist for all data, the silent frame was set to zero using
the voice activity detector of WebRTC [28].

4.2. Evaluation metrics

We used the RMSAE as an evaluation metric for the DOA es-
timation. The angular error is expressed as the dot-product be-
tween the estimated and actual DOA of sound sources, and the
RMSAE is given by the formula below:

RMSAE =

√∑N
n=1(cos

−1(f(yn) · f(ŷn)))2

N
, (10)

where ŷn, and · are the spherical coordinates of the estimated
source direction and dot-product operator. The Eq. (10) is ex-
pressed in radians; however, the RMSAE is expressed in de-
grees for clarity.

4.3. Experimental setups

To obtain the SRP-PHAT for each frame, we constructed a
frame using a Hanning window of 4096 sizes and a 25% over-
lap of 16 kHz audio. The proposed model was trained for 80
epochs and it took 13 hours. We used the Adam [29] optimizer
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Figure 4: Result comparison in different levels of noise and re-
berveration. Top: RMSAE of SR-SRP and Cross3D. Bottom:
RMSAE of HR map and SR map. The silent frames were not
included.

on a single NVIDIA RTX 3090 Ti and experimented using Py-
Torch 1.13.0 based on Ubuntu 20.04. The initial learning rate
was set to 1×10−3, and after 20 epochs, it was set to 1×10−4.
In addition, similar to Cross3D, we used a curriculum learning
technique that fixed the SNR at 30 dB until the 20th epoch, and
then set the SNR at 5 dB to 30 dB.

5. Results and Analyses
5.1. Performance comparison

The performance of the DOA estimation is significantly affected
by the quality of the spatial spectrum. We compared the LR,
HR, ideal, and SR maps under the same scenarios shown in Fig.
3 to demonstrate the superiority of the SR map. The ideal map
is extracted in the same scenarios as the other power maps, un-
der the ideal condition (SNR = 30 dB and T60 = 0.2 s). Under
the condition that SNR = 30 dB and T60 = 0.6 s, the SR map
shows a high peak only near the actual direction of the source,
while the LR and HR maps revealed high SRP values in other
regions as well (notably the central area of the map). In par-
ticular, in the worst conditions, SNR = 5 dB and T60 = 0.9 s,
SRP-PHAT-based LR and HR maps failed to estimate the DOA
of the source, while the SR map still exhibited distinct and exact
peaks around of actual DOA. Compared to the ideal map, these
results suggest that differences arise due to the effects of noise
and reverberation. Moreover, the results demonstrate that the
SR map is more robust in poor scenarios.

We compared the DOA estimation results of SR-SRP and
Cross3D to validate the superiority of the proposed method.
We used a simulation-based dataset and the LOCATA dataset
for the performance comparison. The experimental results for
the simulation-based data are shown in Fig. 4. Because random
parameters generate the simulation data, we repeated the ex-
periment five times to obtain the general results. The top graph
shows that the SR-SRP outperforms Cross3D performance, par-

Table 1: Results of RMSAE to LOCATA dataset. Map size is the
resolution of map. The silent frames were included.

Model Cross3D SR-SRP
Map size 8×16 16×32 32×64 64×128 32×64 64×128

Task1 8.65 5.99 4.26 3.77 3.61 3.63
Task3 14.85 11.21 9.49 8.58 8.33 7.23
Task5 15.08 12.31 11.19 11.52 11.04 11.09

Average 12.86 9.83 8.31 7.96 7.66 7.32

Table 2: Result comparison of the effect of each loss function in
the LOCATA dataset on RMSAE.

Model SR-SRP (32×64)

LSR ✓ ✓ ✗
Largmax ✓ ✗ ✓

Task1 3.61 4.24 4.20
Task3 8.33 8.79 9.31
Task5 11.04 10.90 11.12

Average 7.66 7.98 8.21

ticularly in noisy and reverberant scenarios. The bottom graph
shows the RMSAE between the peaks and the ground truth for
the HR map and the SR map, demonstrating that the SR map
has more precise spatial information than the HR map. The re-
sults for the LOCATA dataset are depicted in Table 1 and show
a performance improvement of approximately 8% in terms of
the RMSAE compared with that of Cross3D based on the same
map size. These results show that the SR-SRP is effective even
for real-recording data.

5.2. Ablation studies

The ablation studies are carried out to demonstrate the influ-
ence of a proposed argmax loss function, which is suitable for
the SRP-PHAT power map. The results in Table 2 show that
using only the argmax loss as the unique objective function had
lower performance than using only the SR loss, as it ignores the
properties of SRP-PHAT and overfits to peak points. However,
when using the two losses together, enabling the minimization
of DOA estimation error in the feature map while maintaining
the characteristics of the SRP-PHAT. As a result, the argmax
loss shows superior advantages when used with the SR loss and
can achieve competitive performance.

6. Conclusion
In this paper, we introduced a novel SSL and tracking model
SR-SRP. The SR-SRP generated high-quality spatial spectrum
which can surpass the limitation of SRP-PHAT in worse acous-
tic conditions. In addition, the advantage of this model was that
it used an LR map with low computational cost. Experimental
results demonstrate that the SR map clearly represents the ac-
tual DOA of the source, and our proposed method outperforms
state-of-the-art models in poor situations.
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