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Abstract
Large models (e.g., GPT-3, CLIP, DALL-E) show remark-

able few-shot and zero-shot capabilities when trained on hun-
dreds of millions of samples. Despite this trend, no publicly
available synchronized music audio and lyrics dataset of suffi-
cient scale exists, nor does a reliable evaluation benchmark to
assess a model’s performance. To address this issue, we build
and release MusicLyric, a large public dataset with over 320k
audio sequences and lyrics pairs for a total duration of 1,200
hours based on a collection of over 32,000 songs. The genera-
tion process is based on the teacher-student paradigm where the
student seeks to outclass the teacher with more data available
using the newly generated pseudo-alignments. The method is
efficient and straightforward with at least 3 iterations needed to
create high-quality data that can be scaled to a hundred thou-
sand samples. We make our dataset, toolkit, and pre-trained
models open-source1.
Index Terms: music information retrieval, dataset genera-
tion, automatic lyrics transcription, automatic lyrics alignment,
speech recognition, non-autoregressive models

1. Introduction
Having large labeled training data is essential for training large
models with high generalization and transfer capabilities. There
has been considerable effort to generate such datasets [1, 2].
However, those are either limited in size or accessibility or are
shallow by their properties, such as when the genre or the singer
distribution is too skewed. For example, when the DALI dataset
[1] was first released, it consisted of 5,358 audio tracks, only
2,748 of which are currently accessible via YouTube links as of
October 2022. This amounts to merely 146 hours of training
data. The toolkit was never made open-source, so it’s not even
possible to rebuild the dataset. Moreover, the genre distribution
of the dataset is heavily skewed towards rock and pop music
(1,804 and 1,509 tracks respectively), with other relevant gen-
res being severely underrepresented (metal: 529, r&b: 159, hip-
hop/rap: 64). There also exist datasets in the form of Karaoke
interpretations (play-along) [2]. However, those datasets are
still small (∼150h [3]) and hardly accessible. To address this
issue, we build and release a large public dataset with over
320k audio sequences and lyrics pairs for a total amount of
1,200 hours based on a collection of over 32,000 songs. We
are going to describe the method to create such a dataset via the
teacher-student paradigm similar to previous work [1]. More-
over, we justify the better characteristics of such a dataset com-
pared to the existing ones. Furthermore, we demonstrate suc-
cessful training with such datasets using state-of-the-art (SOTA)

1https://github.com/domainflag/music-lyric.

models for Automatic Speech Recognition (ASR), getting con-
sistent results across all existing evaluation benchmarks.

2. Methodology
We start by collecting over 32,000 audio and lyrics pairs (32,465
to be precise). We rely on highly popular charts such as Bill-
board charts2 and extensive collections of audio metadata such
as Million Song Dataset [4] for the extraction of song metadata
(e.g., artist, title). Next, we perform filtering which is a two-
step process consisting of finding the best candidate pair, lyrics
content, and audio source.

2.1. Pre-processing

We use the YouTube API3 to automatically query for a set of
audio candidates that match some specific criteria, such as a
minimum and maximum duration of 2 and 6 minutes respec-
tively, a minimum view count of 1k, and a rating score of 4.3
out of 5.0. We give higher priority to search results that in-
clude the keyword “lyrics” in the result title, as they are likely
to contain audio materials without additional editing (interlude,
promotional or explicit content). Due to limited storage capac-
ity, we store the audio data in MP3 format with a low bit rate
of 128 kbps, even though this may affect the ASR performance
negatively [5].

For lyrics, we use multiple sources (e.g., Genius, Musix-
match, LyricFind) to increase the pool of high-quality matches
for any audio source. We also filter out pairs that are not in
English based on the transcript vocabulary. However, we allow
a limited number of foreign words in the pre-processing stage.
These words are well-represented and help increase the num-
ber of pairs available. The text pre-processing step involves
removing noise (e.g., embedded tags, annotations, or URLs),
converting numbers to words (e.g., ”401” → ”four-o-one” or
”four hundred one”), transliterating foreign words (e.g., “Rosé”
→ “Rose”, “Déjà Vu” → “Deja Vu”), and normalizing non-
lexical vocables (e.g., [ooh, ooooh] → oh).

Initially, we selected the first pair of search results (i.e.,
lyrics content, and audio source) as the best match. In the fi-
nal version, we used the best pre-trained teacher model from
the former version to cherry-pick the best candidate pair among
all query results with the lowest Character Error Rate (CER)
score. That is opposed to using Word Error Rate (WER) which
is less forgiving of errors while identifying words that are not in
the standard vocabulary, such as slang, abbreviations, or neol-

2Billboard, https://www.billboard.com/, API https:
//github.com/guoguo12/billboard-charts.

3YouTube, https://www.youtube.com/, API https://
github.com/ytdl-org/youtube-dl.
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ogisms. We distribute the dataset as URLs for lyrics and audio
data. We have measures in place to mitigate accessibility issues,
such as anti-blacklisting and automatic recovery mechanisms.
For example, it can find alternative audio or lyrics sources if the
original ones are down and realign them with the pre-trained
teacher models.

2.2. Properties

MusicLyric dataset contains 32,465 samples with 7,063 unique
artists; this number may vary as we do not impose any re-
strictions on the source material. For example, 198 tracks are
from the comedy-drama television series “Glee”, which features
many song covers sung by different singers onscreen.

Figure 1: Genre distribution: DALI [1] vs MusicLyric.

Vocal music covers a wide range of styles that can be cate-
gorized by the music genre. For example, Hip-Hop music fea-
tures rapping, which is a rapid, slangy, and rhythmic spoken
delivery of rhymes and wordplay over background instrumenta-
tion with recurring beat patterns. In contrast, rock and metal are
characterized by aggressive, raw, often raspy vocals that may
involve screaming or growling paired with loud guitar riffs, ag-
gressive drumming, and noise. According to the experiment
conducted by Condit-Schultz and Huron [6], the intelligibility
of lyrics varies with the style and to some extent with the genre.
For instance, “Death Metal” pieces received zero intelligibility
scores, i.e., no participant in the experiment could detect a sin-
gle word. On the other hand, “Pop” excerpts achieved scores
close to 100% due to the clean instrumentation and production
anchored by clear vocal parts. Therefore, a rich and diverse col-
lection of data should reflect a high diversity of music genres.
Most of the songs’ genre tags are extracted using the Last.FM
API4, which is a social music service that relies on community-
driven tagging for accurate scoring of genre labels. Over 292
samples have insufficient tags because they are either newly re-
leased or covers or live versions of the official ones. The fi-
nal genre distribution is shown in Figure 1. We extract the top
10 tags for each sample, collapse the sub-genres to their parent
genres, and then choose the most common one. Compared to
DALI [1], the distribution in MusicLyric is less skewed towards
the ”radio-friendly” music genres “Rock” and “Pop” that are
highly accessible and popular among large audiences. On the
other hand, some genres such as “Rap/Hip-Hop”, “Country”,
and “R&B” are better represented; for example, there are 3,198
(10%) “Hip-Hop/Rap” samples in MusicLyric compared to only

4Last.FM, https://www.last.fm/, API https:
//github.com/feross/last-fm.

64 (2%) in DALI. The minority consists of other genres, such as
“Folk”, “Jazz” and “Classical”, that are less popular nowadays
and harder to find with vocals. Overall, the actual distribution
has less variance but also reflects better the listening patterns of
large audiences by relying on popularity measures.

2.3. Vocals Segmentation

Music samples are on average 3m 59s long, which makes learn-
ing the longer-term dependencies difficult and memory costly
for end-to-end training. There have been considerable improve-
ments by researchers in that respect [7, 8]. However, we per-
form chunking to ease future research development since the
vocal parts make up 77.58% of the dataset’s total duration (3m
05s per sample). We segment the vocals by using Spleeter [9]
and perform clustering based on the mean amplitude over all
frequency bands from the resulting Short-Time Fourier Trans-
form (STFT) of the vocal audio signal. Subsequently, we select
only the chunks containing vocals by greedily joining consecu-
tive time steps whose energy exceeds a certain threshold (based
on the previous split) with a maximum silence duration of 1s
between them. Each chunk is restricted to be no more than 20
seconds long. We split the longer chunks by searching for the
longest low-energy sequence as a simple heuristic method of
detecting when a singer briefly catches their breath. While split-
ting, we also support padding by adding noise (instrumentation
parts in the vicinity); otherwise, fixed boundaries for vocal parts
will always be expected during training.

2.4. Alignment Framework

We explore a simple unsupervised generation method for pre-
cise alignments to create our dataset by designing a teacher-
student alignment framework. We use multiple alignment meth-
ods in our model to assess the agreement over the generated
alignments, including forced alignment through dynamic pro-
gramming and beam alignment through anchoring. The for-
mer provides better alignment while the latter highlights any
issues (e.g., multi-layered vocals) within the transcript, which
we then fix. We include those pairs in the next training pro-
cedure if consensus emerges. Initially, the teacher is the pre-
trained model AutoLyrixAlign [10] released open source, and
the student is the model trained on pseudo-alignments gener-
ated by the teacher where we seek to outperform the teacher
until little improvement is shown for cooperation. We evaluate
the agreement between the two models by computing the WER
between the region-based (chunk) transcription outputs given
by them. The filtering threshold is set to 3%, but it can be ad-
justed with a trade-off between quality and quantity. Only the
chunk transcript coming from the teacher’s alignment is added
to the pool of pairs D. There is a filtering stage before matching
that involves discarding chunks coming from degenerate align-
ments (e.g., overlapping vocals) and a pre-processing stage that
transforms the reference transcriptions L closer to the outputs
Tt generated by a history of teacher models Ht. The set of oper-
ations consists of deletions, insertions, or substitutions required
to fix L (e.g., chorus skipping, verse repetition) using a custom
language model LM . In this iterative process, we re-train the
model with newly acquired labeled data and reassess its coop-
eration (Refer to Figure 2). The alignment process takes less
than 1 second per sample, and one whole iteration takes 14h to
process 32,465 samples as we are constrained by the inference
speed while using a single P100 GPU.

Our end goal is to have a cooperation rate of 50%, which
is accomplished by training more accurate systems with more
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Figure 2: Cooperation between AutoLyrixAlign[10] and multi-
ple instances of our model Teachers (T) and Students (S).

training data available. With only 3 iterations and a threshold of
0% WER, the matched pairs increased from 35.83% to 51.13%
(Figure 2). First we seek cooperation between the open-source
pre-trained model - AutoLyrixAlign [10] (teacher) and our stu-
dent models (S1−3). Eventually, our models rebel against the
teacher as they get better, thus becoming teachers (T4−5), and
the pre-trained model becomes a student. This means that we
can expand the dataset by one new sample for every two. We
achieve a 76.73% match ratio only by using our latest teacher
and student models. Key factors for improvement include the
quality of reference lyrics transcripts, model performance in
transcribing, alignment method, consensus method and aggre-
gation method (e.g., majority vote). We also consider the pre-
viously trained teacher models using the majority vote aggre-
gation method which increases the match ratio to 89.25%. A
quick qualitative evaluation using our internal tool for a subset
of randomly sampled 100 pairs shows zero label error with rare
occasions of having at most one word mismatched. It is impor-
tant to note that the number of perfectly matched whole pairs
(not chunks) - 5,742 (17.68%) - is much lower due to frequent
mismatches at the boundaries, where a whole sample has, on
average, 12.53 chunks in aggregate. This level of granularity
(i.e., chunking) allows us to harness a richer and wider pool of
content with finer control over quality. Please see procedure 1
for more details about the method.

2.5. Evaluation Set

For evaluation purposes, we release a curated subset of 256
tracks that is further split into validation and test subsets. For
simplicity’s sake and to avoid blacklisting further samples for
training, we re-use existing excerpts taken from available eval-
uation benchmarks [11, 12, 13, 14]. As described in subsec-
tion 2.2, we take a step further by considering candidates with
multiple replicas (3) that are accessible via YouTube links with
high longevity of at least two years. Additionally, we disre-
gard samples using a much stricter and more complex filter-
ing policy; for example, by avoiding non-fully matching lyrics
per content, overlapping vocals, excerpts containing non-lexical
vocables, the use of fade-out techniques while singing, and
more. Models evaluated on songs by an artist encountered dur-
ing training tend to perform exceptionally well, likely due to
their familiarity with the artist’s singing style and instrumenta-
tion. To prevent this bias, our train, validation, and test sets are
disjoint with respect to the included artists. Additionally, both

Procedure 1: Dataset generation using Teacher-Student
paradigm.

Data: N - Whole audio samples count - 32,000
LN - Original pre-processed lyrics
CN - Where ci ∈ C is a set of vocal chunks

1 Initialize teacher model T ← AutoLyrixAlign;
2 History of teacher models Ht ← ∅;
3 Track the 3rd best model Mp ← null;
4 Generate initial dataset D given T and C;
5 while True do
6 Train our own new student model S on D;
7 Compare S, T , Mp on the test set;
8 if Mp is not null and Mp is better than S then
9 Continue; (e.g., underfitting→ architecture

refinement or increase model complexity)
10 else if S is better than T then
11 Ht ← Union(Ht, T );
12 T, S ← S, T ;
13 Ls ← Transform(L|Ht, LM);
14 D ← ∅;
15 Generate labels Tt and St;
16 Create alignments Ta and Sa given [T, S]t and Ls;
17 foreach ci ∈ C do
18 score←WER(Ls[ci|Ta], Ls[ci|Sa]);
19 if score ≤ 3% then
20 D ← Union(D,Ls[ci|Ta]);

21 Mp ← S;

the validation and the test sets include no more than one song
per artist. Lastly, we consider a balanced distribution over the
singers’ gender, release time (for a total of five decades starting
from the 70s), and music genre (based on eight parent genres).
We acknowledge that accessibility issues might still persist. If
a reference gets invalidated, we can’t fully guarantee perfect re-
covery (i.e., verse missing). However, over one year of ongoing
research, we had zero loss of information on the validation and
test set and minimal changes to the train set with no impact on
its quantity or quality.

3. Model
We use the SOTA model, Conformer [15] (L), for training
on the newly curated dataset. Additionally, we use a custom
transformer-based architecture [16] adapted for the task of train-
ing on noisy data to train on our music data. The inputs to
both networks are a sequence of 80-channel filterbanks features
computed by a fixed window of 25ms with a stride of 10ms. Ini-
tially, the input features are both normalized to zero mean and
unit variance. We use SpecAugment [17] with a mask param-
eter F = 27, a slightly lower time masking frequency mT = 4
[15], and a time mask size depending on the input size r = 0.05.
For a fair comparison, both models use the same convolutional
feature encoder [15]. Additionally, the Conformer has an extra
layer as compensation for replacing the LSTM decoder with a
linear one. Both models share the same number of parameters
with the same number of layers (18 layers).

4. Training
Both models used are trained on the MusicLyric dataset (1,200)
in a non-autoregressive fashion using a Connectionist Tempo-
ral Classification (CTC) [18] decoder for cheaper experimenta-
tion. We favor higher granularity at decoding, instead of us-
ing a sub-word vocabulary; otherwise, the alignment quality
degrades drastically with a higher mismatch error rate at the
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boundaries. The output prediction space contains the English
alphabet, space, apostrophe, and blank (special character for
CTC). During training, we enable batch bucketing based on
the length of the labels with much better generalization, ob-
served empirically. We train both models for 100k optimization
steps with Adam optimizer [19] that has an initial learning rate
1×10−4 with default β1 = 0.9 and β2 = 0.999. We linearly de-
cay the learning rate until it reaches the lowest of 4×10−5. The
batch size is set to 24 for faster convergence, and we use native
mixed precision training on a single GPU to reduce memory
footprint. Additionally, we continue training for another 10k
steps using a larger batch size (2048) via gradient accumula-
tion. This reduces the variance coming from mini-batch training
and improves the performance by reaching a quasi-optimal so-
lution with finer predictions. While training exclusively on the
MusicLyric dataset, we find it extremely helpful to temporarily
disable augmentation and warm up the learning rate for the first
24k steps. Since the dataset has a high variance, we hypothesize
that the momentum-based optimizers stray badly into inaccurate
search directions if the initial learning rate is too high or if too
much augmentation is applied. A better alternative is to perform
knowledge transfer from similar tasks (e.g., LibriSpeech [20])
by pre-training for a few epochs. This avoids poor initialization
of the attention mechanism. We only apply pre-training while
training new models for dataset generation. We also use a fixed
dropout probability (p = 0.1) for all our models. The overall
training time is approximately 15.3 days on the whole dataset
on a single P100 GPU. While evaluating, we consider a single
type of language model for acoustic model decoding: a 4-gram
model using KenLM toolkit [21] which is trained on the corpus
based on the train-set data. We use a small budget of 10 trials,
each with a beam-width of 200, to estimate the best hyperpa-
rameters (α = 0.69, β = 1.68) while decoding using CMA-ES
sampler [22, 23].

5. Experiments

First, we ask ourselves whether background music paired with
clean vocals is worth consideration while training our models on
music data. Spleeter [9] adds distortion to the extracted singing
vocals having some sort of muffled sound to it. That can ad-
versely affect the performance of our model and possibly far
outweigh the negative effect of having noisy instrumentation
while training on polyphonic music. As shown in Table 1, we
see no improvement when the models are trained on original
polyphonic audio as opposed to what was shown by Gupta et
al. [10]. The model trained on vocals performs generally better
at lyrics transcription, although it comes with the cost of having
alignment of worse quality. For further evaluation, however, we
still only consider the model trained on vocals, as it achieves the
lowest transcription error and outperforms the Conformer [15]
architecture.

Table 1: Evaluation results — ours vs Conformer [15] — for
MusicLyric dataset (polyphonic audio and vocals only).

Model Dataset Type WER (%)

Ours Polyphonic Audio 32.13
Vocals Only 31.74

Conformer [15] Polyphonic Audio 35.05
Vocals Only 34.62

Table 2: Evaluation (WER%) on four music-related evaluation
sets for lyrics transcription.

Model Jamendo Mauch Hansen Dali-test

DDA [24] 72.15 75.39 74.81 -
CG [10] 59.60 44.00 - -

GGL [25] 56.76 43.76 45.88 -
MSTRE-Net [11] 34.94 37.33 36.78 42.11

E2E Trans. [3] 44.12 33.69 36.85 40.20
PoLyScriber [26] 41.00 32.83 33.57 36.52

TransferLearn [27] 33.13 28.48 18.71 30.85

Ours 28.74 27.86 28.98 28.60

We also compare our model with those of existing SOTA
approaches for lyrics transcription on the available benchmarks
and use the findings as a proxy for whether our dataset is of suf-
ficient quality. To assess the quality of our dataset, we evaluate
the performance of our model for lyrics transcription on avail-
able benchmarks: Mauch5 [14] (20 songs), Jamendo [12] (20
songs), Hansen [13] (9 songs) and DALI-test [11] (240 songs).

Having the same model trained separately on randomly
sampled, same-sized subsets of the MusicLyric and other
datasets [1, 2] would best justify our claims. Unfortunately,
those sets are restricted, and our many access requests have
been unsuccessful. Despite this, we consistently perform well
on all existing evaluation benchmarks for lyrics transcription
and achieve SOTA results as shown in Table 2, which serves
as the closest proxy for the previously mentioned efforts. This
can be attributed to the nature of our dataset incorporating di-
verse music styles. However, further analysis is required to val-
idate that statement. It should be noted that our model does not
adopt complex music-specific training strategies that might be
responsible for even higher transcription performance. For fu-
ture work, we can consider various strategies such as joint E2E
vocal extraction and lyrics transcription [26], genre-informed
acoustic model training [25], and music tagging [11]. Addition-
ally, we would expect even higher performance gains by switch-
ing to a Seq2Seq architecture, that works similar to how humans
depend on contextual information. This is especially true when
they have to distinguish non-intelligible, highly ambiguous spo-
ken words found in songs.

6. Conclusion
In this paper, we presented a framework that compares the tran-
scriptions generated by the teacher and student models with
the reference lyrics content and produces accurate time-aligned
labels for the melody. We also released a large-scale, high-
availability dataset for music and lyrics which is fully open to
the broad community. We showed that the dataset is of sufficient
quality by achieving SOTA results and performing consistently
well across all the existing evaluation benchmarks using SOTA
models for ASR. The dataset has less skewness and comes with
easy-to-use tools for development and debugging. Our work
can be used for various tasks including lyrics transcription, mu-
sic matching [28], audio-to-lyrics alignment, dataset expansion,
and supervision or evaluation via our bigger and richer set. This
work lays the foundation for large-scale dataset generation and
future research on E2E language-acoustic models, not restricted
by the limited data size or accessibility issues.

5For Mauch [14], we are missing two samples, specifically “Once
In A Lifetime” and “Someday” by Shinya Iguchi (RWC).
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