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Abstract
This paper developed a new memory-augmented sequential
learning based on a contrastive disentangled transformer. Con-
ventionally, transformer is insufficient to characterize long se-
quences since the sequence length is restricted to avoid the re-
quirement of overlarge memory. A direct solution to handle
this issue is to divide long sequence into short segments, but the
context fragmentation will happen. In this paper, the contrastive
disentangled memory is exploited to deal with the increasing
computation cost as well as the overlarge memory requirement
due to long sequences. In particular, an informative selection
over the disentangled memory slots is proposed for iterative up-
dating in a large-span sequence representation. This paper max-
imizes the semantic diversity of memory slots and captures the
contextual semantics via contrastive learning. The experiments
on language understanding show that the context fragmentation
is mitigated by the proposed method with reduced computation.
Index Terms: Sequential learning, contrastive learning, disen-
tangled memory, transformer, language understanding

1. Introduction
It is important to characterize long-term dependencies for
sequential learning. Traditionally, recurrent neural network
(RNN) or long short-term memory (LSTM) has been developed
for sequence representation where the history information is re-
cursively updated and condensed as a state vector. However,
it is still insufficient to preserve large-span information in long
sequences via recurrent networks. In [1], LSTM was analyzed
to preserve the temporal information with a limited length in
previous time steps. More recently, transformer [2, 3, 4, 5] has
been explored for a variety of sequence-to-sequence learning
tasks based on encoder-decoder framework. The key to a suc-
cess using transformer is the self attention over sequence data
via the transformer layer. This layer is learned to capture in-
dividual tokens as well as semantic contexts along a whole se-
quence. But, the shortcoming of transformer is caused by high
computation due to full attention over a long string. The valid
sequence length and contextual information in a real applica-
tion is bounded. Such a shortcoming affects the deployment of
a practical transformer in real world.

To handle the computation overhead and length limita-
tion, there are two categories of solutions which are feasible
to strengthen self attention in transformer. Firstly, the solutions
based on sparse attention were proposed to reduce the compu-
tation and memory costs in full attention [6, 7]. In [8], a ran-
dom window attention was exploited to alleviate the compu-
tation complexity of self attention along a long string sample.
The second category of works was devoted to handle the length
limitation. A direct solution was proposed by dividing an input

string signal or sentence into segments to carry out transformer
for sequence-to-sequence learning. Such a segment-wise at-
tention is feasible to implement attention over long sequences.
This block-wise attention served as a simple solution to run the
attention on long sequences. An obvious weakness was that
the sequence tokens could not access the context outside the
segments which restricted the expressiveness of long-term de-
pendencies beyond the predefined context length. To handle
the context fragmentation, the transformer-XL [9] and compres-
sive transformer [10] were proposed to design a first-in-first-out
(FIFO) memory strategy to store the temporal information in
history sentences in a fixed size of memory blocks. However,
FIFO memory is likely redundant when saving large-span de-
pendencies in a long sequence with the limited memory size.

This paper presents the contrastive disentanglement for
sequence representation in a memory-augmented transformer
where long-term features of input sequence is captured under
the restriction of the predefined context length. To deal with
the weakness of memory representation, there are twofold nov-
elties proposed in this study. First, the information-theoretic
disentanglement of memory slots is presented to enhance the
semantic diversity of memory while reducing the memory re-
dundancy. Second, a distinctive updating mechanism for mem-
ory slots instead of using FIFO method is developed to preserve
the informative tokens and throw away the redundant tokens via
a Gumbel-softmax function. Given the length of input sequence
T , the proposed model architecture is feasible to reduce the time
and memory complexities from O(T 2) to O(T ) in inference
stage while even increasing the classification performance in
sequence-to-sequence learning tasks.

2. Learning for Transformer
2.1. Information-theoretic learning

This study presents a new disentangled memory representation
using transformer based on the information-theoretic features
which are surveyed as follows. Let X denote the input sequence
and Y denote the output sequence which should be sufficiently
preserved by informative mapping from X . Given their joint
distribution p(X,Y ), a statistical dependency between X and
Y can be measured by mutual information I(X;Y ). Y implic-
itly determines the relevant and irrelevant features in X . In-
formation bottleneck method is feasible to find the informative
representation of X which captures the relevant features and
disregards the irrelevant features. In latent representation us-
ing transformer, we are finding the features Z which are most
relevant to Y and simultaneously most compressed and irrele-
vant representation to X . The optimal representation Z is esti-
mated by maximizing I(Z;Y ) under a constraint on I(X;Z).
The learning objective for Z is given by I(Y ;Z) − βI(X;Z)
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where β is tuned to balance a tradeoff between the complexity
of representation I(X;Z) and the amount of the preserved rele-
vant information I(Y ;Z). The learned features Z preserves the
information in X which is useful to predict Y . In [11], the in-
terpretable disentangled representation [12] was proposed with
an annealing β in variational inference.

2.2. Sparse transformer

Vanilla transformer is built by self-attention layers with multi-
ple heads where the individual pairs of tokens are mutually at-
tended. Learning sparse attention has recently attracted consid-
erable interests. Compared with full attention, the sparse trans-
former [8] presented the factorization of attention computation
into local and stride operations which handled different heads
to extract various sparse patterns through random attention and
local attention. Sparse transformers were generally categorized
into three groups. The first category of methods reduced the
computation by making the attention maps sparse in a prede-
termined way. Each token in the sequence only attended a fixed
and small set of the other tokens rather than the whole sequence.
In [8, 13], the auxiliary tokens were added to improve the con-
nectivity of the observed tokens while maintaining the sparsity.
This method was weak because the sparse model was indepen-
dent of input sequence and therefore was not adjustable to new
data. The second category of methods imposed the sparsity in
the calculation of attention map. The third category of methods
attempted to boost the advantages of those in the first two cate-
gories. These works learned the sparse patterns from sequence
data using the k-means clustering [14] and locality-sensitive
hashing to predict the connection between tokens [15, 16]. The
sparse patterns were determined before computing the attention
matrix. The drawback was that the extra computation was re-
quired to train the additional module. This study pursues the
disentangled memory for interpretable attention.

2.3. Memory-augmented transformer

In [9], transformer-XL was proposed to continuously store
and update the past temporal information in a first-in-first-out
(FIFO) memory. This memory-augmented transformer divided
the input sequence into short segments and stored their features
in a memory block [17, 18, 19, 20] which recorded a history of
previous context. This method analyzed the sequence data in
an identical manner similar to vanilla transformer except that,
for each segment, the features calculated by the transformer
were saved and connected with those of the next segment in a
gradient-free manner. This method was able to preserve a large
span of context in a memory which helped understanding from
long sequence data. Let the t-th segment of length L [21] be
denoted as St = {xt

m}Lm=1, xt
m ∈ RD and the hidden states or

attended features Ht be produced by St based on the query Qt,
key Kt and value Vt via

Qt = WqSt, Kt = Wk[fsg(Ht−1)⊕ St]

Vt = Wv[fsg(Ht−1)⊕ St], Ht = Attn(Qt,Kt, Vt)
(1)

where ⊕ denotes the concatenation, fsg(·) denotes the stop-
gradient function and {Wq,Wk,Wv} denotes the model pa-
rameters. This calculation allows the model to access across
previous segments from t−1 to t which provide a larger amount
of input information and therefore assure a richer expressive-
ness. When the model scans to the next segment, the last past
features in the memory are discarded, the remaining features
were shifted, and the new features from a new segment are in-

serted in a FIFO manner. This paper focuses on the disentan-
gled contextual representation from the tokens X ← St and
preserves the informative features of past segments in the mem-
ory Y ←Mt as detailed in what follows.

3. Contrastive Disentangled Learning
In this study, the redundancy in memory-augmented represen-
tation is handled via the information-theoretic disentanglement
[22]. Long sequences are represented by segment-based pro-
cessing where large-span dependencies between segments are
learned. The limitation of FIFO strategy in memory updating
is tackled by an adaptive updating method using the Gumbel-
softmax operation [23, 24] as a binary selector. The importance
of tokens is emphasized via a self updating over memory slots.

3.1. Self adaptation of memory slots

Let Mt denote the memory at time t and X denote the input
sequence which is split or segmented into different segments St

with a fixed length L. The adaptive memory updating is illus-
trated in Figure 1. The first part of the representation is to learn
how to compress the representation which contains contextual
information of L vectors in St = {xt

m}Lm=1. These vectors
are compressed as the features Zt = {ztm}Lm=1 via an encoder
with parameter θ and the outputs of mean µ(xt

m) and variance
Σ(xt

m)) of a Gaussian distribution ztm ∼ N (µ(xt
m),Σ(xt

m)).
These compressed features are selected and stored in the mem-
ory Mt. Similar to the previous variational networks [25],
the compressed feature ztm corresponding to the observed to-
ken xt

m is sampled from the variational distribution qθ(z|x) =
N (µ(x),Σ(x)). The second part is to update the memory Mt

via an adaptive method based on the Gumbel-softmax func-
tion gϕ(·) = Gumbel-Softmax(·) with parameter ϕ [23]. A
Bernoulli indicator or a binary mask K is carried out over the
concatenation of the latest memory Mt−1 and the segment of
individual compressed vectors Zt = {ztm}Lm=1. Those vectors
which are not selected by the trainable mask are disregarded.
FIFO updating is replaced accordingly. Such a memory updat-
ing function Mt = fupd(Mt−1, St) is yielded by

Zt = [zt1, . . . , z
t
L], where ztm ∼ N (µ(xt

m),Σ(xt
m))

M̃ = Mt−1 ⊕ Zt, K = gϕ(Attn(M̃)Wg), Mt = KM̃.

Here, Attn(·) is a self-attention function by using the concate-
nated memoy M̃ and Wg is the parameter of a two-layer feed-
forward network with the outputs calculating the unnormalized
log probability distributions for different memory slots. The
distribution measures the probability of each memory slot re-
maining in the updated memory Mt. Notably, the probability
generated by the masking layer is implemented by a Gumbel-
softmax function where hard sampling of a binary mask is ap-
proximated. Different from FIFO strategy, a distinctive and
adaptive scheme to memory updating is implemented. This up-
dating consolidates the most relevant composition of memory
slots for prediction of future context St+1.

3.2. Contrastive disentangled learning

Importantly, the redundant information in memory-augmented
transformer is reduced via an informative disentanglement [26].
The learning objective is constructed to pursue the optimally
compressed or disentangled memory Mt corresponding to input
segment St by maximally preserving the information to predict
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Figure 1: Sequential memory updating via a binary mask layer.

future segments {St+1, . . . , St+k} and increasing the semantic
diversity D(·) of current memory by maximizing

I(St+k;Mt)− β(I(St;Mt)−D(Mt)) (2)

where the second term is seen as a constraint. With β > 1, the
memory Mt is pushed to learn a compact latent representation
of input tokens, which is disentangled if the tokens in St con-
tain the underlying variations that are independent of Mt. At
the same time, the memory is diverse by maximizing D(·) and
reflecting the semantic meaning of future information St+k as
much as possible. The contrastive loss or InfoNCE loss [27] is
used to estimate the mutual information between memory Mt

and future segments St+k. Considering a set of Ns segments
S = {St}Ns

t=1 containing one positive sample from p(St+k|Mt)
and Ns− 1 negative samples from S which is randomly picked
from the segments in the same batch, we maximize

I(St+k;Mt) ≈ −LInfoNCE = ES

[
log

f(St+k,Mt)∑
Si∈S f(Si,Mt)

]

(3)
where f(St+k,Mt) ∝ p(St+k|Mt)

p(St+k)
is an estimate of density ra-

tio. This study practically uses the average pooling to calculate
the segment-level representation of memory Mt and segment
St+k, and then adopts the cosine similarity to calculate the den-
sity ratio between them. The objective LInfoNCE is seen as the
categorical cross-entropy of classifying the positive sample cor-
rectly through the form f∑

S f
for representing the prediction

model. This prediction model corresponds to calculate the con-
ditional probability of detecting a positive segment Si ∈ S.
The probability p(Si|S,Mt) of a segment Si drawn from the
conditional distribution p(Si|Mt) rather than the proposal dis-
tribution p(Si) is calculated by

p(Si|Mt)
∏

l ̸=i p(Sl)
∑Ns

j=1 p(Sj |Mt)
∏

l ̸=j p(Sl)
=

p(Si|Mt)
p(Si)∑Ns

j=1

p(Sj |Mt)

p(Sj)

. (4)

Owing to high dimensionality of input features in St, it is
challenging to compute I(St;Mt) when the memory size in-
creases. The efficient calculations for the diversity of memory
and the mutual information between memory Mt and input seg-
ment St are required. In the implementation, the localized in-
formation [28] between input token x and compressed feature z
is calculated. To enhance semantic diversity in the memory, the
binary mask is estimated to drop the tokens that are redundant

with similar meaning. Accordingly, the constraint loss Lconstr

in the second term of Eq. (2) is calculated for individual sam-
ples {xt

m, zm}. Mutual information and diversity measure are
calculated through Kullback-Leiblier (KL) divergence by

∑

xt
m∈St

I(xt
m; zm)−D(Mt) =

∑

xt
m∈St

KL[pθ(z|xt
m)∥p(z)]

−
∑

xm∈Bt

∑

xj∈Bt

KL(pθ(z|xm)∥pθ(z|xj)) ≜ Lconstr (5)

where Bt is the buffer to store all original tokens at time t. This
constraint loss is minimized to encourage the memory learn-
ing a disentangled representation [11] as well as enhance the
semantic diversity of the updated memory. The overall loss
for contrastive disentangled memory is formed by Lmem =
LInfoNCE + βLconstr. Minimizing the loss Lmem is equivalent to
maximizing the bound of mutual information in Eq. (3). No-
tably, the training procedure for the contrastive disentangled
memory is performed in a way of self-supervised sequential
learning where an efficient memory updating is learned with-
out any labeled data.

3.3. Contrastive disentangled transformer

The contrastive disentangled memory is then combined in trans-
former to construct the contrastive disentangled transformer
(CDT) for supervised sequence-to-sequence learning. CDT is
seen as a new transformer powered by the contrastive disen-
tangled memory which is utilized to map from input sequence
X = {xm}Ti

m=1 to output sequence Y = {yn}To
n=1 with differ-

ent lengths. A sliding window with a fixed size L is used to split
X into individual segments S = {St}Ns

t=1 with Ns = ⌈Ti
L
⌉. To

enhance the dependencies between different segments, this new
transformer carries out the memory-augmented multi-head at-
tention in the encoder with parameter θe = {Wq,Wk,Wv}

Qt = WqSt, Kt = Wk[Mt−1 ⊕ St]

Vt = Wv[Mt−1 ⊕ St], Ht = Attn(Qt,Kt, Vt).

This encoder is operated by finding the memory-driven input
features H = {Ht}Ns

t=1 where Ht = Encoder(St,Mt−1; θe).
Importantly, the contrastive disentangled memory, updated by
Mt = fupd(Mt−1, St) in Sec. 3.1 and trained by minimiz-
ing memory loss Lmem in Eqs. (3)(5), is configured to build
CDT. Importantly, a decoder with parameter θd is incorpo-
rated to predict yn of a target sequence y1:To or {yn}To

n=1 se-
quentially by given the previous tokens y1:n−1. Segmenta-
tion is run for learning the self-attention layers of decoder or
the cross-attention layers between encoder and decoder. The
conditional likelihood for prediction of an output sample yn
is calculated via the decoder or classifier p(yn|y1:n−1, X) =
Decoder(y1:n−1, H; θd). This CDT is trained by minimizing
the memory loss for disentangled updates as well as the classi-
fication loss for sequence generation

Lcdt = Lmen + EX,Y ∼p(X,Y )[− log p(Y |X)]. (6)

4. Experiments
4.1. Experimental setup

WMT dataset was used to evaluate the proposed method for
machine translation where 4M, 6K, and 7K pairs of sentences
were used for training, validation and testing, respectively. Byte
pair encoding [29] with 32K merge operations were employed
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to segment the words into subword units. All attention mod-
els were built with 6 blocks. Using WMT, the dimensions of
word embeddings, hidden states and heads were 512, 1024 and
8, respectively. The evaluations were done by using FAIRSEQ
framework [30]. All of the models were composed by an ad-
ditional convolution module for subsampling, consisting of two
layers of 2D-convolution with ReLU activation, stride size 2,
256 channels and kernel size 3. The dimensions of blocks,
hidden states and heads in all attention models were 6, 1024,
and 8, respectively. In WMT, all models were trained from
scratch with Adam optimizer with initial learning rate 1e-3,
hyperparameter β and memory slot number were set to 1.1
and 10, respectively. The dropout rate for attention and feed-
forward layers was set as 0.1. The proposed CDT (also de-
noted as the disentangled transformer) was compared with four
strong baselines including transformer [2], sparse transformer
[8], transformer-XL [9] and compressive transformer [10, 31].

4.2. Experimental results

Table 1 reports the results using WMT dataset. Inference time
relative to transformer is shown. In WMT En-De and English-
to-French (En-Fr), CDT obtains the highest BLEU in compari-
son with other efficient transformers, and also attains the BLEU
close to transformer but with one-third inference time.

Model En→De En→Fr Cost

Transformer 27.3 38.1 1x
Sparse Transformer 23.2 34.8 0.39x
Transformer-XL 24.1 35.2 0.31x
Compressive Transformer 24.6 37.1 0.36x
Disentangled Transformer 27.4 38.4 0.33x

Table 1: Results of BLEUs and costs on WMT En-De and En-Fr.

A number of analyses are performed. Diversity analysis is
first investigated. The embedding vectors in a group of texts can
be treated as a cluster in high-dimensional space. Specifically,
the shape of an isocontour of a cluster is seen as an axis-aligned
ellipsoid in RD where D is the embedding dimension. A diver-
sity metric [32] is measured to estimate the cluster’s dispersion
or spreadness via a generalized sense of the radius. The diver-
sity metric is defined as the geometric mean of radius across
all axes by Mdiversity = (r1r2 · · · rD)

1
D where ri is the radius

or the standard deviation of the cluster along the i-th axis. Ta-
ble 2 shows that the semantic diversity using CDT memory is
much larger than those memories in compressive transformer
and transformer-XL. With a memory containing richer diver-
sity, CDT receives better disentangled representation than the
other transformers using FIFO memory in machine translation.

Model Diversity

Transformer-XL 2.314
Compressive Transformer 2.661
Disentangled Transformer 5.253

Table 2: Results of the diversity of memory on WMT En-Fr.

The updating algorithm in a memory system is crucial. Us-
ing the FIFO strategy, the memory blocks were deleted, shifted
and added in a regular order without considering how often they

were accessed before. However, the optimal memory updating
algorithm needs to make sure that the system can swap out un-
necessary slot when a slot needs to be swapped in, which is
very hard to be achieved in practice. To address this issue, con-
trastive disentangled memory is designed to mimic the optimal
algorithm by utilizing the contrastive learning. As shown in Ta-
ble 3, CDT outperforms FIFO memory-augmented transformers
even with a smaller number of memory slots.

Model Memory Slots BLEU

Transformer-XL 5 35.1
Transformer-XL 10 35.2
Transformer-XL 20 36.1
Disentangled Transformer 5 37.2
Disentangled Transformer 10 38.4
Disentangled Transformer 20 38.8

Table 3: BLEUs under different size of memory slots on WMT.

Model #Params Perplexity

Transformer 128M 31.2
Sparse Transformer 156M 27.3
Transformer-XL 151M 24.0
Disentangled Transformer 153M 21.9

Table 4: Model sizes and perplexities on WikiText-103.

Different methods are further investigated by language
modeling in presence of long sequences where the document-
level context using WikiText-103 is adopted to evaluate the
long-term dependencies. This dataset contains 103M training
tokens from 28K articles wtih an averaged length of 3.6K to-
kens per article. In the implementation, the attention length,
memory size, layer size, head size and other hyperparameters
are referred to those of transformer-XL [9]. Table 4 shows
that the perplexity using word-level CDT is lower than those
of character-level transformer [9] and word-level sparse trans-
former and transformer-XL. The increase of parameter size us-
ing CDT relative to transformer-XL is limited. The proposed
CDT is seen as a general approach to different lengths of train-
ing and test sequences for language understanding.

5. Conclusions
This paper has presented a distinctive and adaptive memory
updating to preserve informative elements and discard the re-
dundant elements. Latent disentanglement and memory updat-
ing were performed by maximizing the information-theoretic
objective with Gumbel-softmax operation. With the enriched
memory, transformer-based model could handle long sequences
with a linear computational complexity and a constant mem-
ory complexity. This improvement tackled the issue of memory
limitation and redundant information in transformers. From the
experiments on three sequential learning tasks, the disentangled
memory was demonstrated to be effective to memorize the past
information with a small size of memory space. The experimen-
tal results showed that this transformer outperformed the other
transformers and even achieved comparable performance with
vanilla transformer but under a relatively low computation time.
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