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Abstract

There has been great interest in developing automatic speech
recognition (ASR) systems that can handle code-switched (CS)
speech to meet the needs of a growing bilingual population.
However, existing datasets are limited in size. It is expensive
and difficult to collect real transcribed spoken CS data due to
the challenges of finding and identifying CS data in the wild.
As a result, many attempts have been made to generate syn-
thetic CS data. Existing methods either require the existence of
CS data during training, or are driven by linguistic knowledge.
We introduce a novel approach of forcing a multilingual MT
system that was trained on non-CS data to generate CS trans-
lations. Comparing against two prior methods, we show that
simply leveraging the shared representations of two languages
(Mandarin and English) yields better CS text generation and,
ultimately, better CS ASR.
Index Terms: code-switching, text generation, data augmenta-
tion, encoder-decoder, unsupervised learning

1. Introduction
Code-switching (CS) refers to a common phenomenon whereby
speakers shift between languages during conversation, espe-
cially in multilingual areas, for example, in India and Singa-
pore. Linguists categorize code-switched language according
to where the switching occurs [1]: at sentence or clause bound-
aries (inter-sentential CS), within a sentence or clause (intra-
sentential CS, also known as code-mixing), or by inserting a tag
phrase (tag switching). There has been great interest in devel-
oping ASR systems for such settings to meet the demand of a
growing bilingual population. However, the lack of CS data is
a major hindrance to these efforts. This motivates techniques
for generating synthetic code-switched sentences, which can be
used to augment text [2] or speech [3] training data.

In contrast to existing methods of code-switched text gen-
eration that either rely on real code-switched training text or
commit to specific linguistic theories [4], we propose a novel
method. We pretrain a Transformer encoder-decoder model on
parallel text without any real code-switched data, and then force
the decoder to switch languages a given number of times. Our
method simply leverages the shared representations induced
by pretraining a multilingual translation model. Our experi-
ments focus on intra-sentential CS and demonstrate improve-
ments against two standard methods on the SEAME corpus [5].

† Equal contribution, part of this work was done during JSALT
2022 at JHU, with gift-funds from Amazon, Microsoft and Google.
This work was also supported in part by the UKRI (EP/S022481/1).
We thank Adithya Renduchintala for early discussions.

2. Related work
There have been many efforts to construct synthetic data to aug-
ment the small existing datasets of code-switched text. As par-
allel monolingual texts are far more plentiful (or can be cre-
ated by machine translation), a popular research direction is to
align parallel sentences and mix them under the guidance of
linguistic theories of code-switching, such as Functional Head
Constraints or Equivalence Constraints [6, 4, 7]. These rule-
based methods can only extract and concatenate monolingual
fragments from the parallel texts. Another line of work directly
generates synthetic code-switched sentences from a language
model or conditional language model that has been trained us-
ing a small amount of code-switched data. This work variously
uses RNN models [8, 9, 10, 11], Pointer-Generator networks
[2], GANs [12, 13, 14, 15], and VAEs [16].

Similar to the linguistic rule-based approaches, our pro-
posed method requires only parallel monolingual text. How-
ever, our method uses a sequence-to-sequence model, which
enjoys the same flexibility as prior methods that take the con-
ditional language modeling approach. When a small amount
of code-switched text is available, we can use it to additionally
fine-tune our model—which improves the quality of the gener-
ation to be on par with or better than other supervised methods.

3. Methodology
3.1. Parallel Text Pretraining
Word embeddings play an integral role in modern Speech and
NLP models. Questions about the degree to which the em-
bedding spaces of different languages share a similar structure
have received much interest. Early work in the cross-lingual
word embedding literature showed that separately learned, non-
contextual word embeddings of different languages can be
aligned via linear mappings [17, 18]. In the case of contex-
tual word embeddings, similar alignment results (using more
sophisticated mappings like centered kernel alignment) have
been reported for separate monolingual BERTs as well as for
a multilingual BERT [19, 20].

Would emergent alignments on word embeddings (contex-
tual or not), learned simply from text prediction tasks on multi-
ple languages, be enough to support code-switched generation
among those languages? We study this question by pretraining
a many-to-many machine translation system on monolingual
inputs and outputs, and then forcing the decoder to translate
monolingual inputs into code-switched outputs. Specifically,
we train a Transformer encoder-decoder model [21] to trans-
late between any pair of languages in {Mandarin, English}. We
then translate monolingual sentences from either Mandarin or
English to sentences that are forced to code-switch to varying
degrees, via grid beam search [22]. Finally, we evaluate the
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(a) Transformer architecture, where for each parallel sen-
tence pair (Szh, Sen), we have four training examples
(Szh, Szh), (Sen, Sen), (Szh, Sen), (Sen, Szh). Here
we use (Szh, Sen) for illustration

(b) Decoding process with grid beam search, where shaded boxes denote
three subsets with 0, 1 and 2 code-switching points. Each box represents the
top k hypotheses (not all hypotheses are shown in the figure) at each timestep
in each subset. Colored text and edges show the expansion for each beam.

Figure 1: Model training and decoding

utility of our synthetic CS sentences by using them to train a
n-gram language model to use in a downstream ASR system.

3.2. Translation Model
We use a Transformer encoder-decoder architecture [23] (Fig-
ure 1a), with a vocabulary that is the disjoint union of the vo-
cabularies of the two languages of interest.1 These two vocab-
ularies are harvested from the two sides of the parallel training
corpus. We create 4 training examples for every pair of paral-
lel sentences (x, y): each training example takes one of x or y
as encoder input and one of x or y as decoder output. This is
the same scheme used to train unified MT systems that translate
between many language pairs using the same parameters [24],
and indeed our method could be extended beyond 2 languages.

In a preliminary study, we found that it worked best to train
the model with a modified version of softmax that normalizes
over only words of the desired output language, as opposed
to normalizing over the entire union vocabulary. The latter
formulation penalizes assigning high logits to any word in the
other language. That hinders the natural emergence of aligned
word embedding spaces between the two languages, since it
pushes away uniformly the embeddings of the other language.

3.3. Grid Beam Search
We follow [22] to constrain the decoding by the number of
code-switching points. Different from regular beam search, the
set of prefixes in the beam is partitioned into subsets accord-
ing to the value of some feature (for us, the number of code-
switching points). Each subset is separately pruned back to its
top-k prefixes. Extending a prefix may change its feature value
(for us, if the extension creates a new switching point), in which
case the extension will fall into a different subset. At the end,
the algorithm returns the top elements of each subset—in our
case, the best outputs with 0, 1, 2, . . . code-switching points.
Figure 1b illustrates with a simplified example.

3.4. Other Approaches
To compare to prior methods for generating CS text [4, 2], we
also implement models based on Equivalence Constraint The-
ory (ECT) and on Pointer-Generator Networks (PGN). Both of
these models depend on parallel data. The PGN additionally

1For simplicity, strings that exist in both vocabularies, such as num-
bers, are given two separate embeddings, one for each language. This
also facilitates the softmax modification described later in this section.

requires CS training data, so it serves as a supervised baseline
against which to compare our unsupervised method.
Equivalence Constraint Theory claims that code-switching
can only happen at boundaries where both languages have the
same surface structure. Following the pipeline in [4], we first
use fast align to obtain the word alignment between parallel
sentences and then generate the parse tree for English text
with the Berkeley neural parser [25]. In contrast to the EC
baseline in [2], where they used a simplified linear version of
EC that determines the acceptability of a substitution solely
by checking whether there are crossing alignments, here we
follow [4] and use the alignment together with the constituency
parses to determine if a substitution is acceptable.
Pointer-Generator Networks require supervised training. The
input is the concatenation of the parallel sentences x and y
and the output is the desired code-switched sentence. We re-
implement the model introduced by [2], except that we do not
use part-of-speech tags as additional input features.

4. Experimental setup
4.1. ASR Framework
We begin by pretraining an acoustic model on the union of the
training portions of TED-LIUM 3 [26], an English speech cor-
pus collected from TED talks, and AISHELL-1 [27], a Man-
darin speech corpus consisting of over 170 hours of speech. We
then fine-tune these acoustic models on the monolingual utter-
ances from SEAME [5], a Mandarin-English code-switching
speech corpus collected in conversations and interviews from
Malaysian and Singapore bilingual speakers. SEAME labels
each utterance as English, Mandarin, or CS. As our acoustic
model is not trained on any of the CS utterances, it is typical of
those used in existing multilingual ASR systems.

We combine this hybrid acoustic model with a language
model trained on CS text, and experiment with different ways of
obtaining CS text. We compare the performance of the resulting
ASR systems on the held-out portion of SEAME.2

4.2. Real CS Text
SEAME contains 50K CS utterances for training. We use their
transcripts to train a LM on real data. Our goal in the next sec-

2Both the dev man and dev sge subsets are from https:
//github.com/zengzp0912/SEAME-dev-set.git. In total
they contain 5384 monolingual and 6468 code-switched utterances.
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tions is to synthesize ersatz data that works almost as well.

4.3. Parallel Non-CS Text
For each CS utterance z from SEAME, we also ask Google
Translate to translate it to both English (x) and Mandarin (y), in
each case treating the source sentence z as if it were in the other
language.3 This yields 50K parallel utterances (x, y, z).

4.4. Synthetic CS Data
For a controlled comparison, we take care to have all of our
methods generate synthetic datasets of the same size.

For our proposed unsupervised Constrained Translation
(CT) approach, we train a unified MT model (§3.2) on the 50K
(x, y) pairs and then use grid beam search (§3.3) to decode 3
CS translations of each x and each y. Specifically, for each
c ∈ [1, 3], the final beam holds up to 5 prefixes with exactly c
switching points, and we return the top 1 of those. That yields
6 sentences per pair, which we then randomly subsample to 3.

As our unsupervised baseline, we run ECT (§3.4) on the
(x, y) pairs. Hybridizing each pair in all legal ways yields about
12 CS utterances on average, which we then subsample to 3.

To make use of SEAME supervised z data, we start with
the unified MT model above, and fine-tune it to translate each
of x and y to each of x, y, and z. That is, each SEAME ut-
terance now yields 6 training examples instead of 4.4 We refer
to this model as CST (code-switched translation) and use it to
retranslate each x and each y to 2 new CS utterances (totaling
4), which we then subsample to 3.

As our supervised baseline, we train PGN (§3.4) to trans-
late from the concatenated input xy to the code-switched z, and
use it to retranslate each xy pair to 3 new CS utterances.

Note that we used only the CS portion of SEAME, not the
monolingual portion, to generate our synthetic CS utterances.
This ensured a (unrealistically good) match with the topics and
lengths of the held-out CS utterances.5

4.5. Model Architectures and Training

4.5.1. Translation Models
We use 8-layer, 12-head Transformer encoder-decoders with di-
mension size 768 for our CT and CST systems. For the PGN
baseline, we implemented our own Pointer-Generator Network
following [2] using a one-layer Bi-LSTM encoder and a one-
layer LSTM decoder with hidden dimension 256.6

We tokenize all Mandarin parts of the data using JieBa7 for
pretraining our translation models, while we use character tok-
enization for our implementation of pointer-generator networks
and the ASR language models. For English parts, we always
tokenize at whitespace and punctuation.

4.5.2. Language Models
For each dataset described in §4.2, §4.3, and §4.4, we use
the SRILM toolkit to train a trigram model with Kneser-Ney

3Google Translate may not be optimized to deal with code-switched
inputs like z. As a result, its supposedly monolingual translations some-
times contain some code-switched content from z.

4This can be seen as multi-task regularization. Our actual goal is
to learn to translate x 7→ z and y 7→ z, but fine-tuning on those pairs
alone would lead to low diversity in the beam search, which generates
duplicate n-grams and prevents us from training a KN-discounted n-
gram LM. Thus, we also include the other 4 pairs when fine-tuning.

5SEAME CS sentences differ significantly in length from monolin-
gual ones. In general, longer sentences code-switch more likely [28].

6We also explored adding more parameters in a preliminary study
but did not observe significant improvements in downstream ASR.

7https://github.com/fxsjy/jieba.git

smoothing [29]. For each generated dataset in §4.3, and §4.4,
we additionally train a trigram model by combining it with real
code-switched data (§4.2) via LM interpolation. This leads to
improvements in WER and PPL discussed in §5. Interpolation
weights are optimized on the monolingual SEAME data, dis-
joint from both SEAME code-switched training and test set.

4.5.3. Acoustic Model
We use the Kaldi toolkit to train a hybrid acoustic model.
AISHELL and TED-LIUM datasets are combined to train a
standard speaker adaptive GMM-HMM model at first, then we
use it to produce alignments to train a CNN-TDNN model with
lattice-free maximum mutual information (LF-MMI) criterion,
which consists of 6 CNN layers and 12 TDNN layers. We pre-
train the acoustic model on AISHELL and TED-LIUM and then
fine-tune it on SEAME monolingual. Although we have never
used CS speech during acoustic training, by pretrainging on ad-
ditional two monolingual speech corpora, the obtained acoustic
model has already achieved a competitive result compared with
models trained on the entire SEAME corpus in [10, 30].

The lexicon is obtained by combining the pronunciations of
English words from CMU dictionary and Mandarin characters
from AISHELL dictionary. We use different phoneme units for
each language. Pronunciations for OOV words in the training
data are generated by Phonetisaurus [31]. In the end, we have
180K entries in the lexicon and any uncovered words are treated
as UNK.8 Compared with training two monolingual models us-
ing the same architecture, the performance of the obtained bilin-
gual ASR model only drops by 0.5 absolute word error rate.

5. Results and Discussion
5.1. ASR Results
Table 1 presents word error rate (WER) of our ASR system on
SEAME test set. The ASR system uses the pretrained acoustic
model with trigram LMs trained on synthetic CS text. We break
down the test set further by whether there is any code-switching
contained. The unsupervised (CT) and supervised (CST) ver-
sions of our proposed model respectively achieves better over-
all WER than the ECT and PGN baselines, regardless of LM
interpolation with RealCS. Among unsupervised methods, CT
consistently gets lower WER than ECT on both CS and mono-
lingual utterances. Among supervised methods, CST’s superior
performance compared to PGN on the monolingual subset and
worse performance on the CS subset could be attributed to the
multi-task regularization as well as its lack of the dual-language
input and a copying mechanism which can make learning the
alignment between the two languages easier.

5.2. Language Modeling Results
We also evaluate the various LMs on the text transcripts of
SEAME test set, ignoring the audio. The perplexity (PPL) re-
sults are in Table 1, with a cross-entropy breakdown in Figure 2
(Left). As the plot shows, both ZH and EN tokens cause higher
surprisal when the previous token is in the other language, but
models that use more real CS data are less surprised.

Figure 2 (Mid) shows the percentage of the CS bi/trigrams
contained in the test set that appear in the synthetic texts.9 Fig-

8There are 117 OOV out of 151146 total word tokens on test data.
9A truly Non CS corpus would contain no code-switching bigrams

and trigrams. However they exist in our Non CS dataset because our
Non CS dataset is generated by (Google) translating code-switched sen-
tences into monolingual ones, and Google Translate sometimes fails to
produce a purely monolingual mandarin output, especially for interjec-
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Table 1: ASR WER and LM perplexity evaluations on SEAME dev sets. In each row, the overall best system is bolded and best systems
within categories are underlined. When combining with RealCS, an optimal weight is selected following §4.5.2

.

Supervised Unsupervised
RealCS (50K) CST (150K) PGN(150K) CT(150K) ECT(150K) Non CS(100K)

Individual Datasets

WERall 31.32 31.44 31.80 33.52 34.68 33.97
WERcs 29.82 30.58 30.50 32.80 33.73 33.44
WERmono 34.94 33.78 35.11 35.53 37.03 35.45
PPL 123.43 128.86 136.60 161.21 183.77 153.57

Combined with RealCS

WERall / 30.80 30.90 30.92 31.06 31.18
WERcs / 29.73 29.48 29.62 29.69 30.09
WERmono / 33.63 34.38 34.21 34.46 34.07
PPL / 119.42 134.08 133.15 130.70 129.87

Figure 2: Cross-entropy breakdown and n-gram coverage. Left: Cross-entropy breakdown by the transition of language IDs. Middle:
Token-level code-switched bigram and trigram recall on the SEAME evaluation set. Right: Type-level code-switched bigram and
trigram counts. Darker bars count the number of shared n-gram types between a particular dataset and the SEAME training data.

ure 2 (Right) shows the number of unique CS bi/trigrams in
the synthetic texts (lighter bars) as well as the number of those
bi/trigrams that also appear in the real CS training data (darker
bars).10 Unsurprisingly, RealCS and supervised methods gen-
erate data with much better n-gram coverage. Under unsuper-
vised training, CT can generate more diverse language transi-
tions compared with ECT, as ECT is constrained to output seg-
ments that are in the original sentence pair. Under supervised
settings, PGN generates more diverse n-grams and has better
coverage of the test set.

5.3. Qualitative Properties of Synthetic CS Text
The code-switched sentences generated by our CT model are
not always perfect translations of the input, but are they rea-
sonable CS text? Most of the code-switching consists of lex-
ical substitutions (e.g. “you go to take 营销(marketing) loh
you are the 最好的(best)” ). We find that the resulting sen-
tences are mostly understandable, but errors occur (e.g. “it s
fun to 火车(train, the noun) with them” ), and they don’t al-
ways code-switch in the same places that a bilingual speaker
would (e.g. “my dad is the one who给(give) him the工作(job)”
). Some sentences could code-switch too often because CT re-
quired them to do so.

This matches our intuition that our model should prefer
switching at words that have good translations in the other lan-
guage. Why? Compared to switching at words without good
translations in the other language, switching at words with good
translations creates sentences that are, in the embedding space,
close to sentences those completely in English/Mandarin, which
our model has been trained to generate during training.

5.4. Limitations
We only experimented with two languages in this work, but
the framework could be generalized to generate text that code-
switches among any number of languages. Although only hy-

tion words such as lor, ah and er.
10Recall that the training data of the various synthetic generations

methods were derived from SEAME CS training set.

brid ASR systems have been used in this paper, which generally
perform better when limited data is available [30], it is interest-
ing to investigate if the same finding still holds in an End-to-End
framework. We plan to use the synthetic CS text for LM rescor-
ing in an End-to-End framework as in [32] or LM decoding for
RNN-T [33] in the future.

Compared with ECT, whose performance is constrained by
the effectiveness of the tools for natural language processing,
CT is fully data-driven, relying on learning shared representa-
tions of the language pair from translation pretraining. Hence,
it is less sensitive to the formality of the data. SEAME con-
tains mostly conversational speech and transcriptions, which is
harder to parse and align, but on more formal domains where
linguistic knowledge may help, ECT may become more com-
petitive since it has a better inductive bias. CT is able to freely
generate CS text, including content (such as paraphrases) not
contained in either of the parallel sentences, which could im-
prove diversity. On the other hand, the popular ECT approach
is constrained not to do this, which prevents it from generating
wildly incorrect outputs.

6. Conclusions
We presented a simple yet effective idea: to leverage the emer-
gence of shared representations in pretrained encoder-decoder
models to generate synthetic code-switched data without using
any prior knowledge about code-switching. Although the data
it generates does not outperform methods that use real CS as
supervision, it performs slightly better than other unsupervised
methods such as ECT, and without needing a parser or special-
ized knowledge about code-switching.

Showing the possibility of a fully data-driven, learning ap-
proach to unsupervised CS generation opens up opportunities
for more research in the design of the model architectures and
training objectives. While we explored a simple instantiation
with Transformer encoder-decoders and just the translation ob-
jective, more specialized architectures could lead to better rep-
resentation sharing and in turn better CS generation.
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