
Similar hierarchical representation of speech and other complex sounds in the
brain and deep residual networks: An MEG study

Tzu-Han Zoe Cheng1,Kuan-Lin Chen1,Juliane Schubert2,Ya-Ping Chen2,Tim Brown1,John Iversen1

1University of California, San Diego, USA
2University of Salzburg, Austria

tzcheng@ucsd.edu, kuc029@ucsd.edu, juliane.schubert@plus.ac.at, ya-ping.chen@plus.ac.at,
ttbrown@health.ucsd.edu, jiversen@ucsd.edu

Abstract
Listeners recognize a vast number of complex sounds, but vo-
cal sounds, speech and song, are essential for communica-
tion. Recently, deep neural networks (DNNs) have achieved
human-level accuracy in sound classification, but do they illu-
minate similar properties with biological brains? In this study,
we compared DNNs to primary and secondary auditory cor-
tex to understand the hierarchy of sound representations in
the brain. Ten subjects listened to speech and other natural-
istic sounds while their magnetoencephalography (MEG) sig-
nals were recorded. Widely-used DNNs were trained to clas-
sify the same sounds. Brain activity localized to secondary au-
ditory areas decoded speech significantly more accurately than
other non-human sounds. Secondary auditory selectivity best
matched later, and more complex layers of DNNs. Our results
are compatible with special coding for speech in the brain and
suggest comparable hierarchical principles of DNNs and neural
processing of sounds.
Index Terms: speech perception, decoding model, MEG, deep
neural networks, sound classifications

1. Introduction
Humans hear and recognize a vast number of sounds in every-
day life. Invasive ECoG, primate work, and fMRI studies have
confirmed a general arrangement of primary core auditory areas
coding low-level acoustic features (e.g. frequency, spectrotem-
poral modulation) and secondary belt auditory areas respond-
ing to sounds that are more complex and significant to humans
[1, 2, 3]. However, how these complex sounds such as speech
and song, which are particularly important in our life, are rep-
resented and categorized in high-level auditory areas is still a
mystery. In our study, we propose a novel approach that used
deep neural networks (DNNs) as working models of the human
brain, seeking to identify similar principles in order to under-
stand sound representations in the auditory cortex.

DNNs [4] are essential components of modern artificial in-
telligence (AI) systems and have achieved human-level or even
super-human performance in specific tasks such as game play-
ing [5], object detection [6], and sound classification [7]. Be-
cause DNNs share design principles inspired by the human
brain, such as hierarchical layering and non-linear computation,
they may provide insight into the human brain. Brain archi-
tectures have also inspired the adoption of skip connections or
highways in DNNs, giving the ResNets[8, 9] or highway net-
works [10], which have been shown to empower a DNN to be
scaled to have more than a thousand layers and still improve its
representation power [11].

Despite many aspects of DNNs that are highly artificial,
parallels between these hierarchical principles of DNNs and the
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Figure 1: Schematic analysis flow of fitting a linear model w∗

between MEG signal and DNN model units. The DNN model
units (X) were collected from each layer for each sound. The
predicting value was the variance of MEG for each sound (y).
R2 was computed between the Xw∗ and y, used as a criterion
to measure the model fit. See Section 2.5 for more details.

human brain have been supported by empirical evidence that
higher-level regions (V4 & IT) in the primate visual system are
predicted better by the later layers of neural networks trained
on the image recognition tasks [12, 13]. Yet, only a few studies
have probed these parallels in the auditory system. The most
relevant prior work is the seminal work by Kell et al. [14], who
compared the functional magnetic resonance imaging (fMRI) of
the brain and DNNs. They optimized hierarchical convolutional
neural networks to perform word and music genre recognition
tasks and then showed that differences in stimulus specificity
in primary and non-primary auditory cortex were matched with
different convolutional layers of their DNN, showing a similar
hierarchical processing of sounds between DNNs and human
brains and further claiming unique representations for speech
and music in the brain are also seen in DNNs.

Regarding [14], the result is weakened by the fact that the
separate representations for speech and music are a priori baked
into the DNN, which had two independent branches for speech
and music. Thus it is an open question if a general-purpose
DNN would develop separate speech and music representations.
Furthermore, auditory processing is fundamentally dynamic in
time, and this is not captured by the fMRI. Magnetoencephalog-
raphy (MEG), which has excellent temporal resolution and is
more widely available for human study than invasive methods,
could provide new and valuable insights into the nature of au-
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English Speech

girl speaking
boy speaking
man speaking
angry shouting

whispering

Human Vocal

crying
gargling

humming
screaming

baby babbling

Animal Vocal

dog barking
frog croaking

geese
songbird

cat meowing

Song

rap
classic rock

musical
reggae

soul music

Mechanical

motorcycle revving
telephone ringing

train whistle
car horn

vending machine

Animal 
NonVocal

drinking
wings flapping

buzzing
cicadas
crickets

Human 
NonVocal

finger tapping
biting and chewing

toothbrushing
walking on gravel

heart beat

Foreign Speech

spanish
french

chinese
hindi

russian

Music

orchestra 
big band
bluegrass

techno
video game

Environmental

flushing
ball dribbling
keys jingling

spraying
chopping food

Figure 2: Sound stimuli extracted from the Natural Sound Stim-
ulus set. There are ten sound categories and each with 5 differ-
ent sound examples.

ditory coding. Moreover, convolutional neural networks used
in past work [12, 14, 13] are outperformed by DNNs with skip
connections such as the ResNet [8, 9], wide ResNet [15] and U-
Net [16], which have achieved remarkable performance in many
applications [17, 18, 19] and led to pivotal design principles for
deep learning [11].

In this paper, we asked to what degree dynamic responses
of the human auditory cortex and DNNs may have similar hier-
archical processing principles. We collected MEG signals while
subjects listened to complex, naturalistic sounds in order to in-
vestigate how the human brain and advanced general-purpose
DNNs with skip connections process complex sounds. We
found brain selectivity for speech and vocal sounds, including
song, compared to other non-human sounds in the secondary
auditory cortex and, critically — without presuming this dif-
ference in the network architecture, found that general-purpose
DNNs recaptured this distinction, and primarily in the later lay-
ers of DNNs. To the best of our knowledge, this is the first
work using MEG to demonstrate similar hierarchical processing
of sounds, as well as speech selectivity, in the human auditory
cortex and DNNs trained to perform sound classification.

2. Materials and Methods
2.1. Stimuli

Fifty naturalistic sounds were selected from the Natural Sound
Stimulus set used in [2], each sound is 2-seconds long and
has been categorized into one of ten categories, resulting in 5
sounds in each category (Figure 2). The ten sound categories
are English speech, foreign speech, music (instrumental), song
(music with vocals), human non-speech vocal sound, human
non-vocal sound, animal vocalization, animal non-vocal sound,
mechanical sound, or environmental sound. These sounds were
played in random order with each sound repeated overall 10
times resulting in 500 trials, recorded by MEG. All sounds were
presented binaurally at comfortable volume while participants
were looking at a fixation cross in the center of the screen, that
changed color (switching from black to red for 100ms) at ran-
dom intervals in order to probe participants’ attention (they had
to respond with a button press as quickly as possible).

2.2. MEG data acquisition

Ten individuals (2 females, 8 males, 0 nonbinary, mean age
= 26.1) participated in this study. They were native German
speakers who were fluent in English, reported normal hearing
and no history of psychological or neurological disease, and
were eligible for MEG recordings (i.e. without ferromagnetic
metals in or close to their bodies). This study was in accor-

A41/42 (PAC)

A22c (SAC)

A22r (SAC)

Figure 3: Source localization of primary and secondary audi-
tory cortex. The colored parts are the auditory cortex, including
the primary auditory cortex (PAC) in blue and the caudal and
rostral secondary auditory cortex (SAC) in green and red. The
same regions of left hemisphere were identified, yielding six re-
gions of interest used in the analysis.

dance with the Declaration of Helsinki and approved by the
Ethics Committees of the Department of Psychology, Univer-
sity of Salzburg. Participants signed informed consent forms to
participate. The participants were compensated monetarily or
with course credit.

MEG was recorded at 1000 Hz using a 306-channel Triux
MEG system (Elekta-Neuromag Ltd., Helsinki, Finland) with
102 magnetometers and 204 planar gradiometers in a magnet-
ically shielded room (AK3B, Vakuumschmelze, Hanau, Ger-
many). The MEG signal was online band-pass filtered between
0.1 Hz and 330 Hz. A signal space separation algorithm im-
plemented in the Maxfilter software (version 2.215) provided
by the MEG manufacturer was used to remove external noise
from the MEG signal (mainly 16.6 Hz from Austrian local train
power and 50 Hz and harmonics from the power line). Data
were collected across 10 50-trial blocks and were aligned to an
individual common head position (based on the measured head
position at the beginning of each block).

2.3. MEG data analysis

Data preprocessing was performed using Matlab R2020b (The
MathWorks, Natick, Massachusetts, USA) Fieldtrip toolbox
[20] and in-house scripts. To identify eye blinks and heartbeat
artifacts, 50 independent components were identified from fil-
tered (1 - 100 Hz) continuous magnetometer data of the first
block (10 blocks in total). On average 2.5 ± 0.53 (SD) artifact
components were removed per subject. All data were filtered
between 0.1 Hz and 30 Hz using a finite impulse response (FIR)
filter with Kaiser window. Then, the data were resampled to 100
Hz to save computational power and were epoched from -0.5s
to 3s for further analysis.

To localize the activity, individual head shapes were dig-
itized for each participant including fiducials and at least 300
points on the scalp using a Polhemus Fastrak system (Polhe-
mus, Vermont, USA). A template structural magnetic resonance
image (MRI) from Montreal Neurological Institute (MNI) and
a corresponding 3-d volumetric source space grid (1 cm res-
olution) was warped to match the individual head shape and
fiducials. Source reconstruction was then conducted by a
linearly constrained minimum variance (LCMV) beamformer
[21]. Source-space grid points localized to six regions of in-
terest (ROIs) were used in the further analysis: bilateral pri-
mary auditory cortex (PAC: Brodmann A41/42) and rostral and
caudal secondary auditory cortex (SAC: Brodmann A22r and
A22c), based on the brainnetome atlas [22] (Figure 3).

Using a support vector machine (SVM), we first tested the
sound selectivity of the six ROIs, hypothesizing that the pri-
mary and secondary auditory cortex represent different types
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Figure 4: SVM decoding accuracy of the 6 ROIs across ten sound categories. The asterisks close to the bottom indicate significantly
higher accuracy than 10% (chance level). The black horizontal bars indicate significant pairwise comparisons between sounds.

of sounds, with more significant sounds such as human vocal-
ization, speech, song and music evoking responses in more spe-
cialized areas in the secondary auditory cortex [2, 3, 23, 24, 25].
Time series of MEG responses pooled by averaging within each
ROI were used to decode the ten sound categories in a ten-class
classification task by SVM [26], implemented in Python based
on the Scikit-learn library [27]. The MEG data and correspond-
ing labels were split into the training set (70%) and the testing
set (30%). An RBF kernel was chosen with a penalty parameter
C = 0.7 and a “one-vs-rest” decision function. The sound selec-
tivity was quantified by the main effect of sound categories on
the SVM decoding accuracy on the testing set, using a one-way
analysis of variance (ANOVA) and then pairwise comparisons.

2.4. DNNs trained by the sound classification task

We trained three widely used DNNs, standard pre-activation
ResNet-20 [8, 9], wide ResNet-40-4 [15] and U-Net [16], to
classify sounds from the same Natural Sound Stimulus set used
in the MEG experiments, using all sounds from the dataset to in-
crease the sample size. In total, there are 11 sound classes with
98 training examples and 67 validation examples. Each exam-
ple is a 2-second wav file at 44.1 kHz converted to spectrogram
magnitude for model input. Model output is an 11-element vec-
tor representing the probability of each class. All models are
trained for 240 epochs by minimizing the cross-entropy loss
with the stochastic gradient descent using the initial learning
rate 0.1, weight decay 0.0005, momentum 0.9, and batch size 8.
The learning rate is decreased by a factor of 5 after 60, 120, 160,
and 200 epochs. For the ResNet-20 and wide ResNet-40-4, we
extracted the representations generated by the last layer in each
block. For the U-Net, we extracted the representations given by
each level in the encoder.

2.5. Compare the hierarchical processing between DNNs
and auditory cortical responses

We quantify the similarity between the representations learned
from a DNN and the MEG signals measured from a brain by

the correlation coefficient under a linear relationship for a given
matrix of model units X and a cortical response y. Because the
data is limited, we find the optimal solution in the ridge regres-
sion sense by w∗ = argminw ∥y−Xw∥22 + λ∥w∥22 to pre-
vent overfitting where there are 50 sounds and λ > 0 is a regu-
larization parameter chosen by a grid search between 10−30 and
1030 with a 10-fold cross-validation. The model units of each
layer with 3 dimensions, including time, frequency, and ker-
nel, were averaged across kernels and transformed into a long
vector for each of the 50 sounds. The variance of the cortical
responses to each sound was extracted for each ROI. Figure 1
illustrates our evaluation. We predict that the primary “core”
area’s source activities are better correlated with earlier layers
than later layers, while the secondary “belt” areas’ activities are
better correlated with later layers than earlier layers.

3. Results
3.1. Cortical selectivity

To test cortical selectivity for sound classes, we first verified if
the SVM decoding accuracy was significantly higher than the
chance level (i.e. 10%) for any sound classes, marked by as-
terisks in Figure 4. The secondary auditory areas showed sig-
nificantly higher decoding accuracy for English speech (right
A22r t(9) = 2.654, p = 0.026), song (left A22c t(9) = 4.011, p =
0.003), foreign speech (left A22r t(9) = 3.548, p = 0.006), and
human vocal sounds (right A22r t(9) = 3.407, p = 0.008). In
contrast, there was marginal to no significance for the primary
auditory cortex except for the foreign speech (right A41/42 t(9)
= 2.48, p = 0.035) and environmental sounds (right A41/42 t(9)
= 5.744, p < 0.000; left A41/42 t(9) = 2.424, p = 0.038).

A one-way ANOVA was used to test selectivity. Only the
secondary auditory areas showed a significant main effect of
sound categories on SVM decoding accuracy, including left
A22c (F (9, 90) = 1.95, p = .054), right A22r (F (9, 90) = 3,
p = .004) and left A22r (F (9, 90) = 2.84, p = .005). These
ROIs were sensitive to specific sound categories such that the
left A22c had the highest decoding accuracy for the human vo-
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Figure 5: Brain sound selectivity correlated with model units
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highly selective to speech, song, and human vocal sounds. The
y-axis represents layers, depending on different DNN architec-
tures. The colors indicate the correlation coefficient squared.

cal sounds. The right A22r had high decoding accuracy for hu-
man vocal sounds, English speech, and foreign speech. The left
A22r had the highest decoding accuracy for foreign speech. The
three significant one-way ANOVA analysis results were further
broken down to pairwise t-tests between sound categories (See
Figure 4 horizontal bars). Results generally showed higher de-
coding accuracy for speech, human vocal sounds, and song than
other non-human sounds in the secondary auditory areas, one
exception being right A22c, which was not significant (F (9, 90)
= 1.17, p = .327). There was no significant selectivity observed
in the primary auditory areas, right A41/42 (F (9, 90) = 1.66, p
= .112) and left A41/42 (F (9, 90) = 1.28, p = .261). Note that
a few accuracy values are lower than the chance level, which is
likely due to the small sample size.

3.2. Brain signal variance correlated with DNN model units

In all three DNN models, the validation accuracy of the sound
classification was higher than the chance level (i.e. 10%), with
WRN-40-4 (9.0M parameters) having the best validation accu-
racy 47.76% with equal performance in the ResNet-20 (0.27M
parameters) and U-Net (31M parameters) at 40.30%. We fo-
cused on comparing sound selectivity profiles in model units of
the best-performing model, WRN-40-4, to selectivity described
in the primary and secondary auditory cortices. Among the 6
ROIs, the variance of neural signals from the right A22r, the
region with the greatest selectivity, was highly correlated (i.e.
higher R-squared) with later WRN-40-4 model layers compared
to earlier layers. In contrast, the variance of the left A41/42 was
slightly higher correlated in the earlier WRN-40-4 layers. Re-
sults for all three candidate models are shown in Figure 5.

4. Conclusion and Discussion
We asked how human brains and DNN models process natu-
ralistic sounds. We specifically investigated whether the hu-
man auditory cortex and DNNs use similar hierarchical princi-
pals and if they similarly privilege more relevant human vocal
sounds such as speech from other everyday sounds in higher-
order levels in the cortex and in the DNNs. Indeed, we found

that higher decoding accuracy was found for speech, human
vocal sounds, and song compared to other non-human sounds
and this effect was most pronounced in the secondary audi-
tory cortex compared to the primary auditory cortex. Further-
more, these highly selective secondary areas bore the most re-
semblance to the later, and more complex DNN layers (as as-
sessed by correlation coefficient). This finding suggests com-
parable hierarchical principles of DNN and neural processing
of sounds. Our finding, in human auditory processing, using
MEG brain recording and advanced DNNs is consistent with
previous research in the visual system primarily using primate
electrophysiology [12, 13, 28].

This is the first study to our awareness using quiet, non-
invasive, and time-sensitive MEG to probe the parallel hierar-
chical processing of naturalistic sounds in human auditory cor-
tex and advanced DNNs with skip connections trained to per-
form sound classification tasks. Our findings of sound selec-
tivity, especially speech selectivity, in the secondary auditory
cortex, are consistent with previous fMRI studies [2, 23, 24]
and ECoG works [3, 25]. Moreover, the finding of similar hier-
archical processing in human brains and current DNN models is
consistent with [14], but further corroborates it with a general-
purpose neural network architecture that did not have any a pri-
ori assumptions about sound categories built into its architec-
ture.

We used broadband MEG signals without much data pre-
processing, but it is well known that there are many special-
ized temporal and frequency-specific signals found within the
broadband MEG signal. Future research may try seeking and
engineering the most relevant time-frequency features from the
MEG signal for a better performance. For example, applying
temporal response function (TRF, forward modeling) on natu-
ral continuous sounds may be particularly relevant [29]. An-
other useful tool in addition to the source localization used in
this study may be principal/ independent component analysis,
which can localize cortical sources based on the specific sound
features [25, 30]. Regarding our SVM results, the MEG-based
sound classification accuracy was above chance and comparable
to a similar study conducting electroencephalography(EEG)-
based classification of natural sounds [31]. Future studies may
recruit a larger sample size to increase SNR and statistical
power, and more importantly for a better SVM model fitting.
Similarly, while we found significant and interpretable results
from DNNs, the sample sizes were small in comparison to many
DNN training studies and thus future studies with larger sam-
ple sizes would be a useful replication. Finally, other DNNs
may have even better performance by incorporating temporal
information such as recurrent networks and Transformers [32],
or even more high-level language models such as Bidirectional
Encoder Representations from Transformers (BERT) [33].

In sum, this study establishes a reliable hierarchical map-
ping between neural networks and human brain dynamics mea-
sured using a widely-available, high temporal resolution brain
imaging modality (MEG) and general-purpose DNNs. These
results can inform future studies targeting larger populations
and real-life applications. Our findings speak for the sound
processing of the brain, and further suggest similar hierarchi-
cal principals in DNNs and the human auditory cortex when
processing naturalistic sounds. This study has the potential to
launch a new way of studying human brains with computational
models and could inspire the architectural design for state-of-
the-art neural networks used for processing complex and natu-
ralistic sounds.
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