
Computational modeling of auditory brainstem responses derived from
modified speech

Tzu-Han Zoe Cheng1, Paul Calamia2

1Department of Cognitive Science, UC San Diego, La Jolla, California, USA
2Reality Labs Research at Meta, Redmond, Washington, USA

tzcheng@ucsd.edu, pcalamia@gmail.com

Abstract

The auditory brainstem response (ABR) is a powerful neuro-
physiological measure to diagnose hearing deficits along the
auditory pathway. Wave I of the ABRs is particularly critical
for assessing early hearing loss, though hard to observe in hu-
mans. The major downside of ABR is that most protocols are
very boring since they use thousands of clicks to elicit ABRs.
Here, we derived modeled ABRs with continuous speech from
an audiobook. Unlike other studies involving computationally
intensive modification that made their speech stimuli unnatural-
sounding and unlikely to be used in real-life applications, we
applied a fast and efficient algorithm that enhances speech tran-
sients to better elicit ABRs. Using the auditory periphery model
that simulates human brains, we derived ABRs from our tran-
sient speech and showed a significantly larger Wave I-V ratio
compared to other stimuli. These results demonstrated a po-
tential of assessing hearing conditions in a more objective and
naturalistic way.

Index Terms: EEG, ABR, speech perception, auditory periph-
ery model, Transients-enhanced speech

1. Introduction

1.1. Auditory brainstem responses

The auditory brainstem response (ABR) is a powerful measure-
ment to assess hearing condition objectively and passively. De-
riving ABRs from real-time conversations, rather than from lab-
oratory tests with specialized stimuli, would have a great im-
pact on augmented reality and virtual reality (i.e. AR/VR) de-
vices on the market which aim to compensate for hearing loss,
as well as on hearing aids in non-clinical settings. Despite the
importance, few studies have achieved this goal. ABRs con-
sist of Waves I-VII where each individual wave component is
associated with a different subcortical structure along the audi-
tory pathway, and can be used to estimate audiograms for in-
dividuals [1, 2]. Waves I, III, and V (triggered by activity at
the auditory nerve, cochlear nucleus, and inferior colliculus, re-
spectively; see [3]) are most distinguishable and used in human
studies. Among them, Wave I is particularly important, though
very hard to derive in human subjects, since it is directly gen-
erated from the peripheral auditory nerve, and thus can be used
to assess hearing loss in the early stage of auditory processing
(e.g. inner-ear neural deficits and synaptopathy). For example,
reduced Wave I amplitudes have been found to be correlated
with aging in animal models [4], human speech perception in
noisy backgrounds [5, 6] and synaptopathy [7, 8, 9, 10, 11, 12].

1.2. Modified speech as an ABR stimulus

Traditionally ABRs are derived from brief, non-speech sounds
such as clicks or tone bursts that can elicit a broadband fre-
quency response. More recent research has shown the ability
to produce an ABR from naturally uttered speech, yet these ap-
proaches only reveal later and larger ABR waves such as Wave
V [13, 14, 15]. For the first time, [16] derived clear Waves I,
III, and V using “peaky” speech, generated by aligning glottal
pulses across speech harmonics for pre-recorded English sto-
ries. Such phase alignment of the speech signal modifies the
time-domain waveform to be peaky and click-like (Figure 1b),
but does not significantly alter the spectral properties of speech
so that it is still fully intelligible while sounding metallic and
unnatural. A more serious issue faced by this modification is
its computationally intensive pre-processing, which makes it
impractical for real-time applications such as hearing aids and
hearing-loss-correcting AR/VR devices during natural conver-
sation. However, other speech-modification approaches might
have better real-life applications. For example, one potentially
exploitable feature in speech is the transients, the brief transi-
tions such as onsets and offsets of the consonants, which are im-
portant cues for identifying and discriminating speech sounds.
So-called “transient speech” can be generated by emphasizing
the transients in the speech signal, and has been found to be
computationally efficient to generate and to have behavioral
benefits such as higher intelligibility in a noisy background
[17, 18]. The characteristics of speech transients mimicking
clicks (i.e., brief and thus broadband) may be a better feature to
elicit ABR [19, 20].

1.3. Computational Modeling of the ABR

As an alternative to assessments with human subjects, which
have faced severe restrictions due to the COVID-19 pandemic,
modified speech could be evaluated through computational sim-
ulations of ABRs rather than in-lab electroencephalography
(EEG) recordings with physical contact. A well established
computational model of the human auditory periphery by [21],
which includes comprehensive auditory models mimicking real
nerve responses, can simulate ABRs and has been verified us-
ing recorded human data. The model includes high, middle and
low spontaneous rate neurons to simulate Wave I, and also has
cochlear nucleus and inferior colliculus components to simu-
late Waves III and V, respectively. Without requiring human
subjects to come into the lab for data collection, the auditory
periphery model offers a viable alternative to compare ABR
waveforms elicited from different speech stimuli.
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Figure 1: A short segment of speech (“This kind”) fed into the auditory periphery model. (a) Unaltered speech: the original speech
signal. (b) Peaky speech: emphasizes the glottal pulses to be “peaky” and “click-like”. (c) Transient speech: focuses on the onset and
offset of the consonants, emphasizing the “noise-like” section in the speech.

1.4. Current study

In our study, we implemented a computationally efficient
speech modification algorithm, transient speech, to elicit
speech-derived ABRs. Such an approach may allow for ABR-
based hearing assessments in more natural conditions with little
to no burden placed on the user. We compared the simulated
ABRs from the auditory periphery model [21] with unaltered
speech, peaky speech, transient speech, and non-speech clicks
as stimuli. Results showed clear ABRs from our computation-
ally efficient transient speech. Furthermore, a more prominent
Wave I was elicited by the transients than unaltered speech and
peaky speech. To the best of our knowledge, this is the first
study using fast and efficient transients-enhancement algorithm
to successfully derive ABRs, especially Wave I. These results
demonstrated the great potential of efficiently implemented and
natural-sounding transients-enhanced speech to derive ABRs,
providing a new way to assess hearing conditions more objec-
tively and naturally.

2. Methods
2.1. Stimuli

The stimuli fed into the auditory periphery model was a sin-
gle click and three modifications of speech with the same con-
tent. The click ABR was simulated using 1 click (0.1 ms sin-
gle monophasic square wave) from the example code included
in the model. The speech stimuli included 40 trials of peaky
speech, transient speech, and unaltered speech as the control
(see Figure 1). The amplitudes of all speech stimuli were nor-
malized to have the same rms value. The unaltered and peaky
speech were downloaded from [16], which were originally ex-
tracted from the audiobook The Alchemyst [22], read by a male
narrator. The transient speech was modified from the unaltered
speech. The unaltered speech was first high-pass filtered with a
cutoff of 700 Hz, then decomposed using wavelet packets with a
Daubechies-18 wavelet to a depth of 4, resulting in 16 sub-band
wavelet packets. For each packet, transients were defined as an
abrupt change of the energy calculated by the Euclidean norm
of the first derivatives of MFCCs across frequency sub-bands

for each time frame [17, 18, 23]. As in [17], we only empha-
sized the transients of the unvoiced consonant interval but not
the spectral transients in the vowels, the latter of which will cre-
ate unwanted, noticeable fluctuations in loudness. An unvoiced
consonant interval was defined as having small short-time en-
ergy (i.e., lower in unvoiced consonants than voiced vowels)
and a higher zero crossing rate (i.e. higher in unvoiced conso-
nants than voiced vowels) compared to the average across the
entire speech signal. This “consonant detection” algorithm was
run before the transient detection. The detected transient por-
tions of the speech were enhanced by doubling the amplitude,
which kept the stimuli within reasonable volume. Note that the
peaky-speech algorithm and the transient-speech algorithm em-
phasized very different portions of the speech (see Figure 1):
the former emphasized the vowel glottal pulses while the latter
emphasized the sudden transitions of the consonants.

2.2. ABRs Modeling

We modeled ABR waveforms with the auditory periphery
model from [21] with default settings for normal hearing, in-
cluding 13 high spontaneous rate (70 spikes/s), 3 middle spon-
taneous rate (10 spikes/s) and 3 low spontaneous rate (1 spike/s)
fibers. Due to the computation time, we only used the last 16s
of the speech stimuli as input. We focused on Waves I, III, and
V as the model’s output. The speech ABRs were derived by
deconvolution [15, 16, 24], which is based on the assumption
of a linear relationship between the speech input and the EEG
output with the ABRs considered to be the auditory system’s
impulse response. Deconvolution was conducted between the
model outputs and the regressors, which were a click , glottal
pulse train, rectified transients and rectified speech signal, re-
spectively for the click, peaky speech, transient speech, and un-
altered speech, normalized to a range of [0 1]. All computation
was done in Matlab.

2.3. Statistical analysis

To first verify that continuous speech could derive ABR wave-
forms similar to traditional click-evoked ABRs, we calculated
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Figure 2: Model output of one click (black) and (averaged over 40 trials of) peaky speech (blue), transient speech (red), and unaltered
speech (yellow). (a) Wave I. (b) Wave III. (c) Wave V. Note that the relative amplitude of the click-evoked ABRs was rescaled by 0.2 to
be comparable with the speech-derived ABRs just for the visualization purpose. Shaded errors are SEs.

the cross-correlation between the model output from clicks and
modified speech. Then, amplitude and the latency of each peak
were extracted. Please note that the regressors used to com-
pute the deconvolution were in their own arbitrary units, and
thus the amplitude of model responses were not comparable
among conditions. Therefore, we analyzed the Wave I-V ra-
tio, an index used in previous literature to quantify the sensitiv-
ity of the ABRs measurement [25, 26, 27]. The Wave I-V ra-
tio was calculated for each trial and for each speech condition.
Repeated-measures analysis of variance (ANOVA) was carried
out to compare the Wave I-V ratios among speech conditions.
Multiple comparisons were corrected using the Bonferroni cor-
rection method (marked as pb). Some trials did not show clear
wave components at the expected latencies; see the Results sec-
tion and Discussion section for further details.

Table 1: The maximum normalized cross-correlations and lags
(ms) between click and speech.

Stimuli Wave I Wave III Wave V

Click/Peaky 0.463
(1.050)

0.817
(1.050)

0.802
(0.950)

Click/Transient 0.385
(1.350)

0.625
(1.400)

0.781
(1.700)

Click/Unaltered 0.540
(0.500)

0.776
(0.750)

0.878
(0.600)

3. Results
The model generated clear ABR waveforms from the click stim-
ulus and all speech inputs (Figure 2). We visualized individ-
ual ABR components (Waves I, III, and V) separately because
the model does not account for all synaptic delays in the au-
ditory pathway and thus does not reflect the accurate temporal
structure of the composite ABRs as found in recorded data (see
[21] for more details). Moderate and high cross-correlations
were found between all three speech ABRs and click ABRs and
across all wave components (see Table 1).

The amplitudes and the latencies of individual wave com-
ponents, Wave I, III and V, are reported in Figure 3, Table 2
and Table 3. To compare the model responses across speech
conditions, we analyzed the Wave I-V ratio.

Table 2: Mean Amplitude and SEs of each peak of Wave I, III
and V.

Stimuli Wave I Wave III Wave V

Peaky
speech

1.204E-
08(8.744E-
11)

1.645E-
08(5.106E-
11)

4.606E-
08(1.309E-
10)

Transient
speech

1.935E-
08(1.375E-
10)

1.363E-
08(1.252E-
10)

3.028E-
08(3.658E-
10)

Unaltered
speech

7.731E-
09(1.047E-
10)

7.358E-
09(5.853E-
11)

1.787E-
08(2.087E-
10)

Table 3: Mean Latency and SEs of each peak of Wave I, III and
V.

Stimuli Wave I Wave III Wave V

Peaky
speech

0.907
(0.000)

1.859
(0.002)

2.816
(0.003)

Transient
speech

0.704
(0.002)

1.380
(0.005)

2.317
(0.012)

Unaltered
speech

1.615
(0.024)

2.575
(0.022)

3.371
(0.017)

The Wave I-V ratio of click-evoked ABRs was 0.333. For
the speech conditions, the mean (standard errors appear in
parentheses) of the Wave I-V ratio was largest in the ABRs de-
rived from the transient speech, 0.778 (0.048) compared with
the unaltered speech, 0.459 (0.024), and the peaky speech,
0.259 (0.010) (Figure 4). There was a main effect of different
speech conditions, F(2, 114) = 20.480, p <.000, with signifi-
cantly higher Wave I-V ratio for the transient speech compared
with the unaltered speech, t(39) = 5.946, pb <.000, d= 1.712,
and the peaky speech, t(39) = 10.930, pb <.000, d= 2.392, and
higher Wave I-V ratio for the unaltered speech compared with
the peaky speech, t(39) = 5.946, pb <.000, d= 1.334.

Some trials did not yield clear wave components at the ex-
pected latencies (see Figure 3); for the purpose of comparison,
we excluded the trials which had any wave component more
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Figure 3: The average of peak amplitude (a) and latency (b)
of Wave I, III and V before and after (c, d) removing the out-
lier trials across peaky speech (blue), transient speech (red)
and unaltered speech (yellow). The number (#/40) on top of
the bar chart of (c) and (d) showed the number of trials within
1.5 interquartile ranges of the upper and lower quartile of the
averaged latency. Error bars are SEs.
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Figure 4: The average of Wave I-V ratio for peaky speech (blue),
transient speech (red) and unaltered speech (yellow). Error
bars are SEs. ***pb <.0001.

than 1.5 interquartile ranges above the upper quartile or below
the lower quartile of the averaged latency and computed the
Wave I-V ratio. The statistical results of the Wave I-V ratio
among speech conditions remained significant after excluding
those trials.

4. Discussion
The current study tested if a computationally efficient speech
modification algorithm, the transient speech, can effectively de-
rive ABRs. Accordingly, we compared the derived ABRs from
our transient speech to the previously used peaky and unaltered
speech [16]. All three speech stimuli generated clear mod-
eled Waves I, III and V as simulated by the auditory periphery
model. The transient speech and the peaky speech emphasized
different portions of the speech and thus have different model
responses. The peaky speech consistently showed Wave I, III
and V across trials, while the transient speech showed the most
prominent Wave I, which has been particularly challenging to
derive from previous studies [25, 26, 27].

Our finding of distinct Wave I in the transient speech may
be critical in cochlear synaptopathy or “hidden hearing loss”
from putative auditory nerve deficits [7, 8, 9, 10, 11, 12], which
do not affect threshold audiometry but rather supra-threshold

hearing ability. The transient speech may have great benefit on
not only enhanced intelligibility in general but also improved
supra-threshold hearing ability for cochlear synaptopathy lis-
teners. Future research will need to establish the relationship
between intelligibility and ABRs, and also further investigate
the ABRs of hidden hearing loss listeners. Importantly, tran-
sients enhanced in the transient speech are not occurring as fre-
quently as the glottal pulses enhanced in the peaky speech, but
have higher Wave I-V ratio compared with the peaky speech.
The high Wave I-V ratio of the transient speech can be arise
from relatively large Wave I or relatively small Wave V, or both,
which cannot be concluded based on the data of this study.

Note that before removing the outliers, the latency of the
derived wave components were generally more variable in the
transient speech than the unaltered and peaky speech (error bars
in Figure 3a,b), reflecting the noise across trials. Specifically,
some trials showed clear wave components, while some did
not. This is consistent with our pilot EEG data (not included
here), which also showed more variable transient-derived ABRs
across subjects. This may be because transients in the transient
speech were more diverse than the glottal pulses in the peaky
speech such that transient speech emphasized different conso-
nants with varied build-up and decay rates. More studies may
investigate what type of speech transients (e.g. stop, fricative
or affricate consonants) could be the best to elicit ABR wave-
forms. This variability of transient speech also suggests that a
longer recording may be needed to more reliably elicit ABRs
for hearing assessment.

Using the same speech stimuli, regressors and analysis
methods as [16], we compared our modeled ABRs with their
recorded ABRs. Consistent with the human ABRs recorded
by [16], the modeled ABRs of the peaky speech more reliably
showed Wave I, III and V than the unaltered speech, which had
significantly smaller amplitude for all wave components. In-
terestingly, even though the effect was small, our method still
showed clear Wave I and III in the unaltered speech condition,
which was not visible in the empirical results [16]. This may
be due to the noise in real-life EEG collection, which is funda-
mentally greater than that in computational modeling. The lack
of Wave I in their results may be a power issue due to low SNR.
More research and data are needed to investigate the recorded
ABR derived from the unaltered speech.

The current study applied the auditory periphery model to
compare simulated ABRs from unaltered speech, peaky speech,
and our transient speech. This computational model, though
apparently far from empirical data, is a powerful approach as the
first step to test out the modified speech stimuli before running
on human subjects. Future studies need to replicate our findings
with collected EEG from human subjects.

5. Conclusion
In conclusion, our study demonstrated that continuous speech
with varied modifications can be used to derive ABRs. This is
the first study to test if the computationally efficient transient
speech modification can best elicit ABRs early wave compo-
nents without potential EEG artifacts that may be picked up in
the lab. Importantly, compared to peaky speech and unaltered
speech, our transients-enhanced speech derived a clear and sig-
nificantly higher Wave I-V ratio, which has been difficult to
measure reliably in previous studies. These findings shed new
light on speech-derived ABRs research, showing the potential
of real-time hearing estimations that may have great impact on
hearing aids and AR/VR applications.
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