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Abstract
Spoken language understanding (SLU) is a critical task in task-
oriented dialogue systems. However, automatic speech recogni-
tion (ASR) errors often impair the understanding performance.
Despite many previous models have obtained promising results
for improving ASR robustness in SLU, most of them treat clean
manual transcripts and ASR transcripts equally during the fine-
tuning stage. To tackle this issue, in this paper, we propose a
novel method termed C2A-SLU. Specifically speaking, we add
calculated cross attention to the original hidden states and apply
contrastive attention to compare the input transcript with clean
manual transcripts to distill the contrastive information, which
can better capture distinctive features of ASR transcripts. Ex-
periments on three datasets show that C2A-SLU surpasses ex-
isting models and achieves a new state-of-the-art performance,
with a relative improvement of 3.4% in terms of accuracy over
the previous best model on SLURP dataset.
Index Terms: speech language understanding, ASR robust-
ness, cross attention, contrastive attention

1. Introduction
Spoken language understanding (SLU) aims to extract semantic
information from human speech inputs for typical subtasks [1,
2], mainly including intent detection and slot filling [3, 4, 5, 6].
There are two types of solutions for SLU, namely pipeline ap-
proaches and end-to-end approaches. The pipeline SLU meth-
ods combine automatic speech recognition (ASR) module and
natural language understanding (NLU) module in a cascaded
manner, allowing them to apply the external datasets and pre-
trained models from natural language processing (NLP) com-
munity easily. However, pipeline approaches are susceptible to
error propagation, where an imprecise ASR output can theoret-
ically lead to errors in subtasks. As shown in Figure 1, “please
turn up the speaker volume” is recognized as “please turn off the
speaker volume” incorrectly, which leads to a wrong prediction.

As other tasks [7, 8, 9], enhancing learning representations
to be resilient against errors has emerged as a highly effective
approach to mitigate their negative impact, and it is gaining in-
creasing attention. Following [10, 11], this paper aims to im-
prove ASR robustness without using speech-related input fea-
tures and we only concentrate on intent detection.

Although existing error-robust SLU models have made the
promising progress, most of them treat clean manual transcripts
and ASR transcripts as the same type without distinction in fine-
tuning and simply combine them without discrimination, which
limits the performance. In theory, clean manual transcripts and
ASR transcripts can provide distinct types of knowledge, so the
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Figure 1: Due to the ASR error, intent is predicted incorrectly.

model fine-tuned on their combination is not capable of discrim-
inating their specific contributions. The model trained on clean
manual transcripts tends to achieve higher accuracy, whereas
the model trained on ASR transcripts is usually more robust to
ASR errors. Therefore, it is necessary to treat manual and ASR
transcripts differently and leverage their respective characteris-
tics to further improve the performance of the model.

In this paper, we apply cross attention and contrastive at-
tention to improve ASR robustness in SLU. Cross attention [12]
is widely utilized to fuse multimodal features and has demon-
strated its effectiveness in several pioneering works [13, 14, 15].
[14] adopts cross attention for open-vocabulary visual recogni-
tion. Inspired by them, we introduce cross attention to fuse fea-
tures between clean manual transcripts and ASR transcripts to
leverage their respective information. Contrastive attention is
an effective method to detect abnormal information. [16] ap-
plies contrastive attention to selectively attend to relevant and
irrelevant parts of the source sentence for abstractive sentence
summarization. [17] uses contrastive attention to perform vi-
sual modeling and leverage relevant features. In our work, we
utilize contrastive attention to capture unique features of ASR
transcripts to make the model more robust to ASR errors.

Specifically, we concatenate the hidden states of clean man-
ual transcripts and ASR transcripts and use the connected hid-
den states as the query (Q), key (K) and value (V) to compute
the cross attention [12]. Then we add the calculated cross atten-
tion to the corresponding hidden states of the clean manual tran-
scripts and the ASR transcripts as the processed hidden states.
Contrastive attention consists of the aggregate attention and dif-
ferentiate attention. In particular, the aggregate attention is re-
sponsible for identifying clean manual transcripts in the clean
pool which are the most similar to the current input transcript.
The differentiate attention is employed to extract the common
information between the input transcript and the most similar
transcripts and then subtract the common information from the
input transcript to extract the distinctive properties between the
input transcript and the clean manual transcripts.

Experiment results on three public benchmark SLU datasets
SLURP, ATIS and TREC6 [10, 18, 19, 20] demonstrate that our
C2A-SLU significantly surpasses the previous best models and
the model analysis further verifies the superiority of our method.
The contributions of our work are three-fold:

• We propose a novel framework combining cross atten-
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Figure 2: The illustration of pre-training. We utilize self-
supervised contrastive learning with the paired transcripts. A
positive pair consists of clean data and the associated ASR tran-
script from the same audio.

tion and contrastive attention to improve ASR robustness
in the SLU task. To the best of our knowledge, we make
the first attempt to apply contrastive attention to SLU,
making it more robust to ASR errors.

• Experiment results demonstrate that C2A-SLU is capa-
ble of dealing with the transcripts containing noise and
achieves new state-of-the-art performance on three pub-
lic benchmark SLU datasets.

• Model analysis shows that C2A-SLU is able to align the
ASR transcript and its associate clean manual transcript,
which is helpful to further improve ASR robustness.

2. Method
Our proposed framework includes three elements: (1) Self-
supervised contrastive learning (§2.1) in pre-training; (2) Cross
attention (§2.2) in fine-tuning; (3) Contrastive attention (§2.3)
in fine-tuning, consisting of aggregate attention (§2.3.1) and
differentiate attention (§2.3.2).
2.1. Self-supvervised Contrastive Learning
Following [10], we utilize self-supervised contrastive learning
in pre-training to learn sentence representations that are not sus-
ceptible to the misidentification. A pre-trained RoBERTa [21]
is continually trained on spoken language corpus by utilizing
the paired clean and noisy sentences.

Given a mini-batch of input data of N pairs of transcripts
B = {(xp

i , x
q
i )}i=1..N , where xp

i denotes a clean manual tran-
script and xq

i denotes its associated ASR transcript. As shown
in Figure 2, we first apply the pre-trained RoBERTa and utilize
the last layer of [CLS] of RoBERTa to obtain the representa-
tion hp

i for xp
i and hq

i for xq
i :

hp
i = RoBERTa(xp

i ) (1)
hq
i = RoBERTa(xq

i ) (2)

Then we apply the proposed self-supervised contrastive loss
Lc [22, 23] to adjust the sentence representations:

Lc = − 1

2N

∑

(h,h+)∈P

log
es(h,h

+)/τc

∑B
h′ ̸=h es(h,h′)/τc

= −EP

[
s(h, h+)/τc

]
+ E

[
log

( B∑

h′ ̸=h

es(h,h
′)/τc)]

(3)

where P is composed of 2N positive pairs of either (hp
i , h

q
i )

or (hq
i , h

p
i ), τc is the temperature hyper-parameter and s(·, ·)

denotes the cosine similarity function. The first term of Equa-
tion 3 brings the clean manual transcript and its associated ASR

transcript (positive example) near together and the second term
pushes irrelevant ones (negative examples) far apart to promote
uniformity in the representation space [24]. Note that for a tran-
script, its negative examples may be clean manual transcripts or
ASR transcripts. For example, in Figure 2, “tell me a joke” is
a clean manual transcript and “send a reply to mike” is an ASR
transcript. They can both be the negative samples.
2.2. Cross Attention
To better leverage the respective characteristics of clean manual
transcripts and ASR transcripts, we apply cross attention to pro-
cess their hidden states. Suppose the hidden state size is d. We
concatenate the hidden state hp

i ∈ R1×d of the clean manual
transcript xp

i and the hidden state hq
i ∈ R1×d of the associated

ASR transcript xq
i to obtain the connected hidden states hc

i :

hc
i = hp

i ||hq
i (4)

where || denotes the concatenation operation.
We use hc

i ∈ R2×d to obtain query matrix, key matrix and
value matrix to compute cross attention O [12]:

O = Softmax

(
hc
iW

Q
1 WK⊤

1 hc⊤
i√

d

)
hc
iW

V
1 (5)

where WQ
1 ,WK

1 ,WV
1 ∈ Rd×d are projection matrices. Then

we add the cross attention O to the corresponding hidden states
hp
i and hq

i to obtain the processed hidden states hp,c
i and hq,c

i :

hp,c
i = hp

i +O[0:1],[0:d−1] (6)
hq,c
i = hq

i +O[1:2],[0:d−1] (7)

2.3. Contrastive Attention
As shown in Figure 3, we propose contrastive attention to en-
able our model to capture the differentiating properties between
the input transcript and clean manual transcripts. Specifically,
we first collect a clean pool P = {hp,c

1 , hp,c
2 , . . . , hp,c

NP
} which

consists of NP = 1, 000 clean manual transcripts randomly ex-
tracted from the training dataset. Contrastive attention is com-
posed of aggregate attention (§2.3.1) and differentiate atten-
tion (§2.3.2), with the aim of obtaining the contrastive infor-
mation between the input transcript and the clean pool P .
2.3.1. Aggregate Attention
As all transcripts in the pool P are clean, there is no inherent
ranking or priority among them. As a result, it is natural to treat
all the clean manual transcripts equally when capturing the con-
trastive information. However, some clean manual transcripts
may have different grammatical structures from the input tran-
script, it is suboptimal to directly compare these clean manual
transcripts with current input transcript. Therefore, we intro-
duce the aggregate attention to assign higher weights to clean
manual transcripts that are similar to the current input transcript,
and lower weights to transcripts that are dissimilar to the input
transcript. For the processed hidden state of input transcript hc,
the aggregate attention Agg(hc, P ) of hc and the pool P is:

Agg(hc, P ) = Softmax

(
hcW

Q
2 WK⊤

2 P⊤
√
d

)
PWV

2 (8)

where WQ
2 ,WK

2 ,WV
2 ∈ Rd×d are projection matrices. More-

over, inspired by [25], we repeat aggregate attention T times
with different learnable weights to obtain the final output P ′ of
aggregate attention to further improve the performance:

P ′ = [Agg(hc, P )1 ||Agg(hc, P )2 || . . . ||Agg(hc, P )T ]
(9)
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Figure 3: The illustration of Contrastive Attention, which consists of the Aggregate Attention and Differentiate Attention. Aggregate
attention is used to find the most similar clean manual transcripts to the current input transcript in the clean pool. Differential attention
is implemented to summarize the common information between the input transcript and the most similar clean manual transcripts and
subtracts this information from the input transcript to obtain the differential properties.

where Agg(hc, P )i denotes the output of i-th Agg(hc, P ) and
|| denotes the concatenation operation. By repeating T times,
we can efficiently find the most similar clean manual transcripts
P ′ to the input transcript hc from T parts.
2.3.2. Differentiate Attention
To capture the contrastive information between the input tran-
script and the most similar clean manual transcripts, we in-
troduce differentiate attention mechanism. We summarize the
common information h′

c between the information of current in-
put transcript hc and the information of the most similar clean
manual transcripts P ′ as follows:

h′
c = Pooling

(
Softmax

(
QWQ

3 WK⊤
3 K⊤

√
d

)
VWV

3

)

(10)
where Pooling denotes average pooling operation, Q,K, V are
the concatenation of hc and P ′, and WQ

3 ,WK
3 ,WV

3 ∈ Rd×d

are the projection matrices. Through such self-attention mech-
anism, we could utilize the similarity between hc and P ′ to
capture the significant common information.

Then, we subtract the common information h′
c from the in-

put transcript hc to obtain the contrastive information hd
c :

hd
c = hc − h′

c (11)

Finally, we utilize hc and hd
c to calculate the processed hid-

den state hf
c and replace the original transcript hc with hf

c :

hf
c = ReLU([hc ||hd

c ]W
′) (12)

where ReLU(·) stands for the ReLU activation function [26]
and W ′ is the matrix for linear transformation.

The final intent prediction p is calculated as follows:

p = Softmax(hf
cWI + bI) (13)

where WI and bI are weight matrix and bias vector.
2.4. Training Objective
2.4.1. Pre-training
It has been verified that adapting to unlabeled data can still im-
prove the performance after domain-adaptive pre-training [27],
so we continue training the masked language model (MLM) in
pre-training. So the final proposed pre-training loss Lpt is the
weighted sum of the self-supervised contrastive learning loss
Lc and an MLM loss Lmlm:

Lpt = λptLc + (1− λpt) · Lmlm (14)

where λpt is the coefficient balancing the two tasks.

2.4.2. Fine-tuning
Following [28, 29], the training objective in fine-tuning stage is
the cross entropy loss Lce:

Lce = −
NI∑

i=1

yi log pi (15)

where yi denotes the golden intent label and NI is the number
of the intent labels.

3. Experiments
3.1. Datasets and Metrics
Following previous work [10], we conduct all the experiments
on three publicly available benchmark datasets1: SLURP, ATIS
and TREC6 [10, 18, 19, 20]. The statistics of the three datasets
included are shown in Table 1.

Table 1: The statistics of the three SLU datasets. The test set
of SLURP dataset sub-sampled.

Dataset #Class Avg. Length Train Test

SLURP 18× 46 6.93 50,628 10,992
ATIS 22 11.14 4,978 893
TREC6 6 8.89 5,452 500

SLURP is a complex SLU dataset that contains various do-
mains, speakers, and recording settings. The dataset consists of
several (scenario, action) pairs and the prediction is considered
correct only when both the scenario and action are predicted
correctly. ATIS and TREC6 are two public SLU datasets for
flight reservation and question classification, respectively. We
utilize the synthesized text provided by Phoneme-BERT [30],
where the data is first generated by a text-to-speech (TTS)
model and then transcribed by an ASR model.
3.2. Experimental Setting
We compare our model with four baselines:

• RoBERTa [21]: a RoBERTa-base model directly fine-
tuned on the target training data;

1SLURP is available at https://github.com/MiuLab/
SpokenCSE, and ATIS and TREC6 are available at https://
github.com/Observeai-Research/Phoneme-BERT.
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Table 2: Accuracy results on three SLU datasets. † denotes
C2A-SLU obtains statistically significant improvements over
baselines with p < 0.01.

Model SLURP ATIS TREC6

RoBERTa [21] 84.42 94.86 84.54
Phoneme-BERT [30] 84.16 95.14 86.48
SimCSE [23] 84.88 94.32 85.46
SpokenCSE [10] 85.64 95.58 86.82

C2A-SLU 88.56† 96.84† 88.42†

• Phoneme-BERT [30]: a RoBERTa-base model which is
further pre-trained on an additional corpus with phoneme
information. Phoneme sequences are generated from the
ASR hypothesis via phonemizer2;

• SimCSE [23]: a state-of-the-art sentence embedding
method applying contrastive learning.

• SpokenCSE [10]: a strong baseline which applies self-
supvervised contrastive learning in pre-training and su-
pervised contrastive learning in fine-tuning to improve
ASR robustness in the SLU task.

We pre-train the model for 10K steps with a batch size 128
on each dataset, and finetune the whole model up to 10 epochs
with a batch size 256 to avoid overfitting. The training process
will early-stop if the loss on dev set does not decrease for 3
epochs. The mask ratio of MLM is set to 0.15, τc is set to 0.2,
and λpt is set to 0.5. During both pre-training and fine-tuning,
we use Adam optimizer [31] with β1 = 0.9, β2 = 0.98, and
4k warm-up updates to optimize parameters in our model. All
experiments are conducted at an Nvidia Tesla-A100 GPU. The
training process lasts a few hours.
3.3. Main Results
The performance comparison of C2A-SLU and baselines are
shown in Table 2, from which we have following observations:

(1) Our C2A-SLU gains significant and consistent improve-
ments on all tasks and datasets. Specifically, when using man-
ual transcripts, it overpasses the previous state-of-the-art model
SpokenCSE by 3.4%, 1.3%, and 1.8% on SLURP, ATIS and
TREC6, respectively. This is because our model applies con-
trastive attention to extract the distinctive properties between
the input transcript and the clean manual transcripts, which can
further improve ASR robustness in SLU.

(2) In contrast, it is obvious that the improvement on
SLURP dataset is more significant. A possible reason is that
SLURP is a more challenging SLU dataset than ATIS and
TREC6. An intent of SLURP is a (scenario, action) pair and
the prediction is considered to be correct only if the scenario
and action are both correctly predicted. Previous works treat
the clean manual transcripts and ASR transcripts equally with-
out discrimination during the fine-tuning stage, thus the ability
to capture unique information of ASR transcripts is inadequate.
As a result, due to inevitable ASR errors, it is common that one
of the two components of an intent is incorrectly predicted. Our
C2A-SLU aims to fully exploit the differences between ASR
transcripts and clean manual transcripts, leading to the better
performance of the model.
3.4. Analysis
3.4.1. Ablation Study
To verify the advantages of C2A-SLU from different perspec-
tives, we conduct a set of ablation experiments. The experi-
mental results are shown in Table 3. We can clearly observe
that when contrastive learning in pre-training, cross attention

2https://github.com/bootphon/phonemizer

Table 3: Results of ablation experiments.

Model SLURP ATIS TREC6

C2A-SLU 88.56 96.84 88.42

w/o Contrastive Learning 87.92(↓0.64) 96.42(↓0.42) 87.88(↓0.54)
w/o Cross Attention 87.62(↓0.94) 96.26(↓0.58) 87.34(↓1.08)
w/o Contrastive Attention 86.81(↓1.75) 96.02(↓0.82) 87.16(↓1.26)

and contrastive attention in fine-tuning are removed, the accu-
racy on three dataset all drops in varying degrees, which in-
dicates that our method could indeed improve ASR robustness
in SLU. In addition, it is obvious that when contrastive atten-
tion is removed, the degradation of accuracy is more significant.
We believe the reason is that our method is able to understand
the unique features of ASR transcripts more precisely via con-
trastive attention, and thus predict the intent more accurately.

3.4.2. Visualization

To better understand how cross attention and contrastive atten-
tion affects and contributes to the final result, we show the visu-
alization of an example in Figure 4. We visualize the represen-
tations by reducing the dimension with Principal Component
Analysis (PCA) [32]. “turn down volume twenty percent” and
“i want to slow down my speaker” are two manual transcripts
with the same intent, and the representations of them and their
associated ASR transcripts stay close to each other, which also
demonstrates that our method can align the ASR transcript and
its associate manual transcript with high accuracy.

what does bling mean

turn down volume 20%

turn down volume twenty percent

go to map
dota map i want to slow down my speaker

want to slow down my speaker

what does bling
ASR

Manual

Figure 4: Visualization of representations of clean manual tran-
scripts and ASR transcripts. The circle and square in the same
color means the corresponding clean manual transcript and
ASR transcript are associated.

4. Conclusions
In this paper, we propose C2A-SLU, a novel framework for im-
proving ASR robustness in SLU. We apply cross attention to
fuse features between clean manual transcripts and ASR tran-
scripts and apply contrastive attention to capture unique fea-
tures of ASR transcripts. Experiments and analysis on three
public benchmark datasets demonstrate that C2A-SLU signifi-
cantly outperforms the previous best models. In the future, we
will explore how to further leverage the clean manual transcripts
to improve ASR robustness in SLU.
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