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Abstract
Currently, zero-shot cross-lingual spoken language understand-
ing (SLU) attracts increasing attention. Most of existing meth-
ods construct a mixed-language context via the code-switching
approach. However, due to the different syntactic structures of
each language, code-switching might fail to perform well and
result in the loss of semantics. To address this issue, we propose
a novel framework termed FC-MTLF, which applies a multi-
task learning by introducing an auxiliary multilingual neural
machine translation (NMT) task to compensate for the short-
comings of code-switching. In addition, we also adopt the cur-
riculum learning strategy to further improve the performance.
Experimental results show that our framework achieves the new
state-of-the-art performance on the MultiATIS++ dataset. Fur-
ther analysis verifies that our FC-MTLF can effectively transfer
knowledge from source languages to target languages.
Index Terms: spoken language understanding, neural machine
translation, multi-task learning, curriculum learning

1. Introduction
Spoken language understanding (SLU) [1, 2, 3, 4, 5] plays an
important role in the task-oriented spoken dialog systems, with
the aim of understanding user’s current goal through construct-
ing semantic frames. It usually includes two subtasks: intent
detection and slot filling [6, 7, 8, 9, 10, 11]. With the advent of
joint training models for intent detection and slot filling, SLU
has gradually achieved remarkable success. However, most of
existing SLU models rely on the large amounts of labeled train-
ing data, which greatly limits the scalability of the models to
the low-resource languages with little or no training data. Zero-
shot cross-lingual approaches have arisen to address this prob-
lem via transferring language-agnostic knowledge from high-
resource (source) languages to low-resource (target) languages.

To this end, several works have been explored for zero-
shot cross-lingual SLU. Multilingual BERT (mBERT) [12], a
cross-lingual contextual pre-trained model from a large amount
of multi-lingual corpus, has achieved the considerable perfor-
mance for zero-shot cross-lingual SLU. [13] extends the idea
to a multilingual code-switched setting, which aligns the source
language to multiple target languages. [14] employs contrastive
learning and additionally proposes a Local and Global com-
ponent, which achieves the fine-grained cross-lingual transfer.
LAJ-MCL [15] also applies contrastive learning to enhance the
implicit alignment and feed to contrastive learning.

Most of the above-mentioned models that have achieved
promising performance in zero-shot cross-lingual SLU adopt
the code-switching method. However, there is a fatal problem
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in code-switching method. Due to different grammatical struc-
tures of each language, the target language chosen for the se-
lected words according to the bilingual dictionary may not be
very precise, which could result in semantic loss.

To address this problem, we propose a Fine- and Coarse-
grained Multi-Task Learning Framework (FC-MTLF) to per-
form explicit alignment. Specifically, we apply code-switching
method to achieve the fine-grained explicit alignment and intro-
duce neural machine translation (NMT) as an auxiliary task to
achieve coarse-grained explicit alignment. During the process
of machine translation, the semantic information is preserved
between different languages, which could compensate for the
semantic loss in code-switching to some extent. Furthermore,
we introduce a curriculum learning strategy, which encourages
the model to first focus on acquiring the ability to transfer the
coarse-grained multilingual knowledge and then begin to grad-
ually learn how to transfer fine-grained multilingual knowledge.
Experiment results on the public benchmark MultiATIS++ [16]
demonstrate that our FC-MTLF significantly surpasses the pre-
vious best zero-shot cross-lingual SLU models and model anal-
ysis further verifies the advantages of our method.

In summary, the contributions of our work are three-fold:
• We propose FC-MTLF for zero-shot cross-lingual SLU,

which introduces NMT as an auxiliary task.
• We adopt the curriculum learning strategy to further im-

prove the performance of the model.
• Our experiments on the MultiATIS++ benchmark show

that FC-MTLF achieves the new state-of-the-art perfor-
mance, with a relative improvement of 5.9% over the
previous best model in average overall accuracy.

2. Method
We first describe the problem definition of traditional SLU task
and zero-shot cross-lingual SLU task (§2.1). Then we introduce
the three components of our framework, including Generic SLU
Module (§2.2), Multiligual NMT Module (§2.3) and the cur-
riculum learning strategy (§2.4), as shown in Figure 1.
2.1. Problem Formulation
SLU task contains two subtasks: intent detection and slot fill-
ing. Given an input utterance x = (x1, x2, . . . , xn), where n is
the length of x. Intent detection can be formulated as a classifi-
cation task which outputs the intent label oI . And slot filling is
a sequence labeling task which maps each utterance x into a slot
output sequence oS =

(
oS1 , o

S
2 , . . . , o

S
n

)
. Since the two tasks

of intent detection and slot filling are highly related, it is com-
mon to train a single SLU model which is capable of handling
these two tasks. We follow the formalism from [17], which is
formulated as follows:

(oI ,oS) = f(x) (1)
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Figure 1: The main architecture of FC-MTLF, which consists of two components: (1) a generic SLU module (§2.2); (2) a multilingual
NMT module (§2.3). The mBERT models in SLU and NMT share the parameters. Moreover, we also apply a curriculum learning
method (§2.4) to dynamically adjust the weights of these two tasks.

where f is the trained model.
Zero-shot cross-lingual SLU task means that an SLU model

is trained on the source language, e.g., English and directly
adopted to the target language, e.g., German.

Specifically, given each instance xtarget in the target lan-
guage, the predicted intent and slot can be directly obtained by
the model f which is trained on the source language:

(
oI
target,o

S
target

)
= f (xtarget) (2)

where target denotes the target language.
2.2. Generic SLU Module
Following previous work [12], given each input utterance x =
(x1, x2, ..., xn), the input sequence can be constructed through
adding specific tokens x = ([CLS], x1, x2, ..., xn,[SEP]),
where [CLS] denotes the special symbol for representing the
whole sequence, and [SEP] can be used for separating the non-
consecutive token sequences. We apply code-switching [13] to
utilize the bilingual dictionaries [18] to generate multi-lingual
code-switched data as the input of the model. Motivated by the
success of pre-trained models in other tasks [19, 20], we get the
representation of the sequence H = (hCLS, h1, . . . , hn, hSEP)
by using mBERT [12] model. For the intent detection task, we
input the utterence representation hCLS to a classification layer
to obtain the predicted intent:

oI = softmax
(
W IhCLS + bI

)
(3)

where W I and bI denote the trainable matrices. For the slot
filling task, we follow [21] and utilize the representation of the
first sub-token as the whole word representation and utilize the
hidden state to predict each slot:

oS
t = softmax (W sht + bs) (4)

where ht denotes the representation of the first sub-token of
word xt, W s and bs denote the trainable matrices. Following
previous work [17], the intent detection objective LI and the
slot filling objective LS are as follows:

LI ≜ −
nI∑

i=1

ŷI
i log

(
oI
i

)
(5)

LS ≜ −
n∑

j=1

nS∑

i=1

ŷi,S
j log

(
oi,S
j

)
(6)

where ŷI
i is the gold intent label, ŷi,S

j is the gold slot label
for jth token, nI is the number of intent labels, and nS is the
number of slot labels.
2.3. Multilingual NMT Module
To further enhance the coarse-grained explicit alignment, we
introduce a multilingual neural machine translation task as the
auxiliary task. Following [22, 23], we utilize the representation
from mBERT as embeddings. Note that we do not apply code-
switching method before NMT. Given the source language S,
to promote the knowledge transfer and improve the robustness
to inevitable label noise [24], we randomly choose an another
language T as the target language, the training loss is the cross
entropy loss LCE :

LCE = −
|xT |∑

i=1

log pθ(x
T
i |xT

<i, x
S) (7)

where xS denotes an utterance in the source language, xT de-
notes the corresponding utterance in the target language, θ de-
notes the parameter of the NMT module.
2.4. Curriculum Learning
Motivated by the success of curriculum learning [25, 26], we
introduce a curriculum learning strategy. The final loss L of the
multi-task learning framework is:

L = λ(αLI + βLS) + (1− λ)LCE (8)

λ =
k

K
(9)

where α and β are hyper-parameters, k is the current number of
updates, K is the total number of updates, λ is determined by k
and K and dynamic changes during the training process.

3. Experiments
3.1. Datasets and Metrics
We conduct the experiments on the cross-lingual SLU bench-
mark dataset, MultiATIS++1[16], which contains 18 intents and
84 slots for each language. MultiATIS++ further extends Mul-
tilingual ATIS by adding the human-translated data for six ad-
ditional languages, including Spanish (es), German (de), Chi-
nese (zh), Japanese (ja), Portuguese (pt), and French (fr), to the

1https://github.com/amazon-science/multiatis
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Table 1: Experiment results on MultiATIS++. We report both individual and average (AVG) intent detection accuracy, slot filling F1
score and overall accuracy. Results with “*” are taken from the corresponding published paper, results with † are cited from [14], and
results with ‡ are cited from [15]. ‘–’ denotes missing results from the published work.

Intent Accuracy en de es fr hi ja pt tr zh AVG

mBERT* [16] - 95.27 96.35 95.92 80.96 79.42 94.96 69.59 86.27 -
mBERT† [12] 98.54 95.40 96.30 94.31 82.41 76.18 94.95 75.10 82.53 88.42
ZSJoint‡ [27] 98.54 90.48 93.28 94.51 77.15 76.59 94.62 73.29 84.55 87.00
Ensemble-Net* [28] 90.26 92.50 96.64 95.18 77.88 77.04 95.30 75.04 84.99 87.20
CoSDA† [13] 95.74 94.06 92.29 77.04 82.75 73.25 93.05 80.42 78.95 87.32
GL-CLEF* [14] 98.77 97.53 97.05 97.72 86.00 82.84 96.08 83.92 87.68 91.95
LAJ-MCL* [15] 98.77 98.10 98.10 98.77 84.54 81.86 97.09 85.45 89.03 92.41

FC-MTLF 98.97 98.21 98.36 99.01 86.72 82.95 97.34 86.02 89.53 93.01

Slot F1 en de es fr hi ja pt tr zh AVG

Ensemble-Net* [28] 85.05 82.75 77.56 76.19 14.14 9.44 74.00 45.63 37.29 55.78
mBERT* [16] - 82.61 74.98 75.71 31.21 35.75 74.05 23.75 62.27 -
mBERT† [12] 95.11 80.11 78.22 82.25 26.71 25.40 72.37 41.49 53.22 61.66
ZSJoint‡ [27] 95.20 74.79 76.52 74.25 52.73 70.10 72.56 29.66 66.91 68.08
CoSDA† [13] 92.29 81.37 76.94 79.36 64.06 66.62 75.05 48.77 77.32 73.47
GL-CLEF* [14] 95.39 86.30 85.22 84.31 70.34 73.12 81.83 65.85 77.61 80.00
LAJ-MCL* [15] 96.02 86.59 83.03 82.11 61.04 68.52 81.49 65.20 82.00 78.23

FC-MTLF 96.21 86.87 85.66 84.62 73.18 74.24 82.68 68.22 83.16 81.65

Overall Accuracy en de es fr hi ja pt tr zh AVG

AR-S2S-PTR* [29] 86.83 34.00 40.72 17.22 7.45 10.04 33.38 – 23.74 -
IT-S2S-PTR* [30] 87.23 39.46 50.06 46.78 11.42 12.60 39.30 – 28.72 -
mBERT† [12] 87.12 52.69 52.02 37.29 4.92 7.11 43.49 4.33 18.58 36.29
ZSJoint‡ [27] 87.23 41.43 44.46 43.67 16.01 33.59 43.90 1.12 30.80 38.02
CoSDA† [13] 77.04 57.06 46.62 50.06 26.20 28.89 48.77 15.24 46.36 44.03
GL-CLEF* [14] 88.02 66.03 59.53 57.02 34.83 41.42 60.43 28.95 50.62 54.09
LAJ-MCL* [15] 89.81 67.75 59.13 57.56 23.29 29.34 61.93 28.95 54.76 52.50

FC-MTLF 91.58 69.54 61.43 59.62 36.86 44.64 64.55 30.86 56.52 57.29

initial Hindi (hi) and Turkish (tr) languages. Following previ-
ous works [17], we evaluate intent prediction performance using
accuracy, slot filling performance using F1 score, and sentence-
level semantic frame parsing using overall accuracy.
3.2. Implementation Details
We use the base case multilingual BERT (mBERT), which has
N = 12 attention heads and M = 12 transformer blocks.
In Eq.8, α is set to 0.9 and β is set to 0.1. The total num-
ber of updates K is 30k. We utilize Adam optimizer [31] with
β1 = 0.9, β2 = 0.98 to optimize parameters in our model. All
experiments are conducted at an Nvidia Tesla-V100. The train-
ing process lasts several hours.
3.3. Baselines
We compare our model with 8 baselines: (1) mBERT: mBERT2

follows the same model architecture as BERT [12], but in-
stead of training only on monolingual English data, it is trained
on the Wikipedia pages of 104 languages with a shared word
piece vocabulary, allowing the model to share embeddings
across languages; (2) AR-S2S-PTR: [29] proposes a unified
sequence-to-sequence models with the pointer generator net-
work for cross-lingual SLU; (3) IT-S2S-PTR: [30] proposes a
non-autoregressive parser based on insertion transformer, which
speeds up the decoding progress; (4) Ensemble-Net: [28]
proposes an effective zero-shot cross-lingual SLU model,

2https://github.com/google-research/bert/
blob/master/multilingual.md

whose predictions are the majority voting results of 8 indepen-
dent models, each separately trained on a single source lan-
guage; (5) ZSJoint: [27] proposes a zero-shot SLU model,
which is trained on the en training set and directly applied
to the test sets of target languages; (6) CoSDA: [13] pro-
poses a data augmentation framework to generate multi-lingual
code-switching data to fine-tune mBERT, which encourages the
model to align representations from the source and multiple
target languages; (7) GL-CLEF: [14] introduces a contrastive
learning framework to explicitly align representations across
languages for zero-shot cross-lingual SLU; (8) LAJ-MCL: [15]
proposes a multi-level contrastive learning framework for zero-
shot cross-lingual SLU.

3.4. Main Results
From the experimental results on MultiATIS++ dataset shown
in Table 1, we have the following observations:

(1) CoSDA, GL-CLEF and LAJ-MCL all apply code-
switching, we can find they outperform the model that does not
use this method. The reason is that code-switching achieves an
implicit alignment, which can align the representations to some
extent. In addition, our method further improves the perfor-
mance compared to these three models and obtains a relative
improvement of 5.9% over the previous best model in average
overall accuracy. This is because our method introduces NMT
as an auxiliary task, which makes better use of the connections
between different languages.

(2) FC-MTLF achieves significant and consistent improve-
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Model

Utterance(En): can i get the shortest flight from milwaukee to orlando
Slot: O O O O B-flight_mod O O B-fromloc.city_name O B-toloc.city_name

Intent:

Slot: O O O O B-flight_mod O O B-fromloc.city_name O B-toloc.city_name

Intent:

Utterance(De): Zeige mir den kürzesten Flug von milwaukee nach orlando
Slot: O O O O O O B-fromloc.city_name O B-toloc.city_name

Intent:

Slot: O O O B-flight_mod O O B-fromloc.city_name O B-toloc.city_name

Intent:

One Case

En

GL-CLEF
atis_flight

FC-MTLF
atis_flight

De

GL-CLEF
atis_distance

FC-MTLF
atis_flight

Figure 2: A case study of our framework compared to GL-CLEF [14]. Intents and slots in red refer to those that are predicted incorrectly.

Table 2: Ablation results on the MultiATIS++ dataset.

Models Intent Slot Overall

FC-MTLF 93.01 81.65 57.29

w/o NMT 87.32(↓5.69) 73.47(↓8.18) 44.03(↓13.26)
More Parameters 88.24(↓4.77) 74.86(↓6.79) 46.52(↓10.77)
w/o CL 92.58(↓0.43) 81.06(↓0.59) 56.61(↓0.68)

ments in all subtasks. Moreover, compared to high-resource
languages, it obtains larger improvement on low-resource lan-
guages. We can find that there is relatively little training data
for Hindi and Turkish in MultiATIS++ compared to other lan-
guages and the improvement in these two languages is much
greater than that of other high-resource languages. Zero-shot
cross-lingual SLU task is originally designed to solve the prob-
lem of low-resource languages with little training data. This
result demonstrates that our method could effectively transfer
knowledge from source languages to target languages, which
further verifies the superiority of our framework.
3.5. Model Analysis
3.5.1. Effect of Neural Machine Translation

To demonstrate the effectiveness of neural machine translation,
we remove it and refer it to w/o NMT in Table 2. We can ob-
serve that after we remove the NMT module, the intent accu-
racy of MixATIS++ drops by 5.69%. In addition, the overall
accuracy drops by 13.26%, which is an even more significant
decrease. This illustrates the importance of the NMT module
in our model, which enhances the coarse-grained explicit align-
ment between different languages.

3.5.2. Effect of More Parameters

Following the previous works [6, 7], to verify whether the in-
creased parameters of FC-MTLF contribute to the final higher
performance, we add an LSTM layer after the last layer of
mBERT and refer it to More Parameters. The results in Table
2 demonstrate that our framework outperforms mBERT with
more parameters in intent accuracy, slot F1 and overall accu-
racy, which verifies that the improvement indeed comes from
the fine-grained and coarse-grained multi-task learning frame-
work rather than the involved parameters.

3.5.3. Effect of Curriculum Learning
To demonstrate the effectiveness of curriculum learning, we de-
sign a variant termed w/o CL and the results are shown in Ta-

ble 2. We remove the curriculum strategy and utilize static
coefficients. After several experiments, the model works best
when λ in Eq.9 is set to 0.6. So we set λ to 0.6 for this ab-
lation experiment. We can clearly find that curriculum learn-
ing strategy is very effective in improving the performance of
the model, which encourages the model to initially concentrate
on obtaining proficiency in transferring coarse-grained multilin-
gual knowledge and then gradually learns how to transfer fine-
grained multilingual knowledge.

3.6. Case Study

To further demonstrate the advancement of our model relative
to previous models working on the zero-shot cross-lingual SLU
task, we provide a case study in which we illustrate the effects
of our model on different languages. We use English and Ger-
man as examples. As shown in Figure 2, we can find that the
prediction results of both GL-CLEF and FC-MTLF are correct
for English. For the utterance in German with the same mean-
ing, the predicted slots and intents of GL-CLEF are inaccuracy,
while FC-MTLF could predict correctly. This suggests that our
model achieves better cross-lingual transfer with higher gener-
alizability through the introduced NMT module.

4. Conclusions

In this paper, we propose FC-MTLF, a novel multi-task learn-
ing framework for zero-shot cross-lingual spoken language un-
derstanding (SLU), which utilizes code-switching for coarse-
grained alignment and NMT for fine-grained alignment. In ad-
dition, we apply a curriculum learning strategy to further im-
prove the performance. Experiments on MultiATIS++ dataset
show that FC-MTLF achieve a new state-of-the-art perfor-
mance. And model analysis indicates that FC-MTLF success-
fully transfers knowledge from source languages to target lan-
guages. Future work will focus on how to further achieve ex-
plicit alignment to improve the performance.
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