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Abstract
Spoken question answering (SQA) aims to identify the correct
answer to the given the question from a spoken passage. Most
conventional SQA frameworks combine an automatic speech
recognition (ASR) module and a text question answering (TQA)
module in a cascaded manner, which might suffer from error
propagation and high latency. To tackle these issues, several
end-to-end SQA frameworks based on Textless NLP are pro-
posed. However, existing end-to-end models still fail to outper-
form the cascade models with the similar number of parameters.
In this paper, to improve textless SQA, we propose GhostT5,
which generates more features from the remaining features with
very cheap operations for stronger performance. Experiment
results and further analysis show that our GhostT5 achieves the
new state-of-the-art performance on NMSQA dataset and sur-
passes cascaded SQA models. More encouragingly, GhostT5
surpasses the previous best end-to-end SQA model with less
than half of the parameters.
Index Terms: spoken question answering, Textless NLP, end-
to-end frameworks, cheap operations

1. Introduction
As a crucial task for personal assistants, spoken question an-
swering (SQA) has attracted more and more attention from re-
searchers. SQA requires the machine to retrieve and summa-
rize the spoken passage from a fixed collection, and then ana-
lyze the retrieved information to provide the answer based on
the given question, where the answer is a span from the spoken
passage. In contrast to other relatively simple spoken language
understanding tasks [1, 2, 3, 4], SQA is recognized as a more
challenging task which involves understanding the meaning of
each spoken phrase and requires advanced comprehension and
reasoning abilities to process longer audio content.

Most of the conventional SQA frameworks are cascaded by
connecting separately an automatic speech recognition (ASR)
module and a text question answering (TQA) module. The ASR
module transcribes speech sequences into corresponding texts,
and the TQA module predicts a concrete answer using natural
language processing (NLP) techniques. However, the cascade
SQA frameworks might suffer from error propagation and high
latency. The inevitable errors (e.g., pull to pool ) from the ASR
module may cause catastrophic problems to the TQA module.
As other tasks [5], label noise is also common in SQA. Mean-
while, correct answers to the questions may include name en-
tities or out-of-vocabulary (OOV) words that can never be rec-
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ognized. As a result, the key information will be lost when
the speech sequences are transformed into transcripts with er-
rors. Furthermore, the ASR module is trained to achieve a lower
word error rate (WER), which treats all words equally without
distinction [6]. However, different words have different impor-
tance for SQA task. Some words appear frequently in the cor-
rect answers, while some words are absolutely irrelevant to the
SQA task. Minimizing WER on words which are irrelevant to
the SQA task is meaningless and may even affect the perfor-
mance of the SQA model. Therefore, it may be sub-optimal to
individually train ASR and TQA models in a cascaded manner.

To address these issues, several text-based methods [7, 8, 9]
and fusion-based methods [10, 11, 12] are applied in several
works. [7, 13] utilize a sub-word unit strategy to mitigate
the negative impacts of ASR errors. Knowledge distillation is
adopted by [14, 15] to improve ASR robustness of the TQA
model. [16] designs a two-stage training framework including
a self-supervised training stage and a contrastive representa-
tion learning stage to capture semantic similarity while mod-
elling the interactions between speech and text data. [17] intro-
duces a teacher-student framework to transfer knowledge from
a weighted teacher to improve the robustness of ASR module
of the student model. [9] constructs a cross-modal speech and
text pre-trained BERT-based language model with aligned se-
mantics for SQA task to jointly learn audio-text features to alle-
viate the ASR errors. [6] proposes the first textless end-to-end
SQA framework DUAL based on Longformer [18], which uti-
lizes no ASR transcripts and thus not suffering from ASR er-
rors. Owing to bypassing the ASR stage, it is more robust to
real-world data. Recently, [19] proposes ByT5lephone based
on ByT5 [20], which has more than twice the parameters than
DUAL. ByT5lephone justifies the utilization of byte-level mod-
els over subword-level models in the SQA task and outperforms
other end-to-end SQA methods.

Despite there have been some models which leverage Text-
less NLP technique to avoid suffering from ASR errors [6, 19],
they still fail to outperform the cascade models with the similar
number of parameters. We believe a critical reason is that there
are not enough features in these models, resulting in inadequate
modeling. To tackle this issue, we propose a novel end-to-end
SQA framework termed GhostT5. Specifically, we introduce
the ghost module, whose effectiveness is demonstrated in many
computer vision (CV) tasks [21] and NLP tasks [22]. We uti-
lize ByT5lephone [19] for initialization and prune away unim-
portant attention heads with the width multiplier m. Then, we
use the efficient 1-Dimensional Depthwise Separable Convolu-
tion (DWConv) [23] as the fundamental operation in the ghost
module. Meanwhile, softmax function is applied to normalize
the convolution kernel to ensure that the generated ghost fea-
tures have comparable scales to the original ones. We proceed
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Figure 1: The architecture of the GhostT5 framework, which consists of three components: (1) original speech waveform is fed into
speech content encoder to obtain the discrete unit sequence; (2) ByT5lephone transforms the discrete unit sequence to start and end
time; (3) Ghost Module generates more features with very cheap operations.

with fine-tuning the parameters of both the ByT5lephone back-
bone model and the ghost modules.

GhostT5 leverages pre-trained models to extract quantized
and condensed speech representations from speech sequences,
and adapts a pre-trained language model to produce answers to
the questions without relying on any ASR transcripts. Through
directly locating the answer span from the speech sequence, the
extracted answers are not affected by ASR errors or OOV is-
sues which often occur in ASR frameworks. Experiment results
show that our GhostT5 (m = 1/3) significantly outperforms
previous models, and the unpruned GhostT5 (m = 1) can even
perform better than the pruned version. Model analysis further
verifies the advantages of our model.

The contributions of this work are four-fold:
• To the best of our knowledge, we make the first attempt

to generate more features with cheap operations by ap-
plying the ghost module for the SQA task.

• Experiment results demonstrate that our model achieves
new state-of-the-art performance on the NMSQA dataset
and surpasses the cascaded SQA models with the similar
number of parameters for the first time.

• Our model exceeds the previous best end-to-end SQA
model with less than half of the parameters.

• In parallel, our proposed method is a unified framework,
which can be easily applied to a variety of downstream
speech processing tasks.

2. Method
2.1. Problem Formulation

The corpus of SQA usually contains question-passage-answer
triples, which can be formulated as D = {(q,p,a)}, where
q is the audio sequence of a question, p is the audio sequence
of a passage and a is the audio sequence of the answer to the
question. An end-to-end SQA framework aims to directly gen-
erate the starting time ts and the ending time te, denoted as the
answer span a, from the spoken passage p given the spoken
question q without generating any ASR transcripts.

2.2. Model Architecture

As shown in Figure 1, our framework comprises of three major
components, including the Speech Content Encoder (§2.2.1),
ByT5lephone (§2.2.2) and the Ghost Module (§2.2.3).

2.2.1. Speech Content Encoder

Given a question-passage audio waveform (q,p) pair, unlike
conventional cascade SQA frameworks, the Speech Content En-
coder transforms the pair (zq, zp) into the sequences of discrete
units rather than corresponding ASR transcripts.

Following [6], we adopt HuBERT-Large1[24] for feature
extraction, which is trained by masking prediction objectives
similar to BERT [25]. HuBERT-Large contains 24 transformer
encoder layers and is pre-trained on the Libri-Light 60k hours
dataset2[26], to encode the raw waveform into frame-level 1024
dimension features, with each frame equivalent to 20 ms. Then
we apply the open-source S3PRL3[27] toolkit to extract the rep-
resentations of the HuBERT-Large model.

To feed the extracted features into the following pre-trained
language model, we perform a quantization operation on them.
We adopt K-means clustering to layer-wise representations of
HuBERT-Large and train the K-means clustering model on the
100-hours subset of LibriSpeech dataset4[28]. For the cluster-
ing process, we use 64, 128, and 512 clusters, respectively. The
resulting discrete units are represented by the clustering indices.
To reduce sequence length and remove duration information, we
merge repetitive discrete units to form a dense discrete unit se-
quence for the question and passage, denoted as (zq, zp). We
also record the repetition of every discrete units in zq and zp,
denoted as cq and cp, respectively, which allows us to recover
the frame-level indices and convert the answer span back to the
time interval during the inference stage.

2.2.2. Pre-trained Language Model

Pre-trained language models (PLMs) are often introduced to
improve the performance [29, 30, 31, 32, 33]. To improve
the downstream SQA task, we leverage the transferability of
PLMs from related fields. Since the previous work [19] ver-
ifies that byte-level models outperform subword-level models
in SQA, we choose ByT5lephone [19] as the pre-trained lan-
guage model, which is first initialized with ByT5 [20] and then
fine-tuned with the phonemicized inputs from the wiki text cor-
pus. Specifically, we initialize the network using the weights
of ByT5lephone and randomly assign pre-trained embeddings
to the discrete units. The input of ByT5lephone is the concate-
nated sequences of discrete units of the question and paragraph
pairs (zq, zp). A randomly initialized linear layer is added on
the top of ByT5lephone, and outputs the predicted start and end
time (ys, ye) as the answer to the question.

The length of a discrete unit sequence is much longer than
its corresponding text, and the duration of a spoken passage is
also very long. Following [19], we slice the context into several
segments to concatenate them with the question and force the
model to find the correct segment and the correct span. After

1https://github.com/facebookresearch/fairseq/
tree/main/examples/hubert

2https://github.com/facebookresearch/
libri-light

3https://github.com/s3prl/s3prl
4http://www.openslr.org/12
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this operation, we are able to reduce the model length constraint
to 1024 to accommodate ByT5lephone.

2.2.3. Ghost Module

Despite existing models have obtained the promising results via
Textless NLP technique, they still fail to surpass cascade SQA
models with the similar number of parameters. We believe the
reason is that there are not enough features in ByT5lephone. To
tackle this issue, we add ghost modules to the top of its encoder
to generate more features with negligible additional parameters.

Meanwhile, since there are much more parameters than the
previous model [6] in ByT5lephone, we also prune away unim-
portant attention heads of ByT5lephone with the width multi-
plier m. Previous works [34, 22] illustrates that the calculations
involved in attention heads of multi-head attention (MHA) can
operate concurrently. Consequently, by removing the parame-
ters associated with the attention heads, ByT5lephone can un-
dergo a systematic compression process.

We denote the sequence length as n and denote the hidden
state size as d, respectively. For the input matrix X ∈ Rn×d,
the output of the h-th attention head is as follows:

Hh (X) = Softmax

(
XWQ

h WK⊤
h X⊤

√
d

)
XWV

h WO⊤
h (1)

where WQ
h ,WK

h ,WV
h ,WO

h ∈ Rd×dh are parameter matri-
ces, and dh is computed as follows:

dh = d/NH (2)

In the original MHA, the final output of NH heads are com-
puted in parallel as follows:

OORIG(X) =

NH∑

h=1

Hh(X) (3)

Convolution operation is capable of encoding local con-
text dependency, which can serve as an effective complement
to global self-attention mechanisms [35, 36]. In addition, many
features, such as vertical and diagonal attention maps, can be
easily generated by applying convolution operation on sim-
ilar other features [37]. Moreover, 1-Dimensional convolu-
tion (Conv1D) operation applied to the sequence direction can
capture the local dependency and has been shown to be highly
effective for many NLP tasks [23, 36]. In order to take advan-
tage of the representational power of Conv1D while minimizing
additional memory and computation requirements, we finally
choose DWConv as the ghost module. DWConv applies convo-
lution independently over each channel, reducing the number of
parameters from d2k to dk compared to Conv1D, where k de-
notes the convolution kernel size. We input the output Hh(X)
of the hth head in MHA to DWConv. By utilizing DWConv, the
output OD for the ith token and the cth channel is as follows:

OD(Hh(X)) =
k∑

m=1

Wc,m ·Hh(X)
i−⌈ k+1

2 ⌉+m,c
(4)

Following [23], we also apply the softmax function to nor-
malize the convolution kernel to ensure that the output has a
similar scale as the input. The normalized output ÔD is:

ÔD(Hh(X)) =
k∑

m=1

Softmax(Wc,m) ·Hh(X)
i−⌈ k+1

2 ⌉+m,c

(5)

Given a width multiplier m ≤ 1, we keep M = ⌊Nhm⌋
heads and utilize them to generate F ghost features. The f th

ghost feature Gf (X) is generated by:

Gf (X) = ReLU

(
M∑

h=1

ÔD(Hh(X))

)
(6)

where ReLU [38] is applied as the nonlinearity function. Thus
the final output of MHA in GhostT5 is as follows:

OGhost(X) =
M∑

h=1

Hh(X) +
F∑

f=1

Gf (X) (7)

To further improve the performance, we adopt knowledge
distillation method. We denote the layers of encoder as S. The
final distillation loss Ldis is the sum of the embedding distilla-
tion loss Lemb and the hidden states distillation loss Lmha:

Lemb = MSE(EG,E) (8)

Lmha =
S∑

s=1

MSE(MG
s ,Ms) (9)

Ldis = Lemb + Lmha (10)

where MSE denotes the mean squared error, EG and E de-
note the output of the embedding layer from the student model
GhostT5 and the full-sized teacher model ByT5lephone, and
MG

s and Ms denote the hidden states after MHA from GhostT5
and ByT5lephone, respectively.

2.3. Training Objective

The overall training objective for SQA is as follows:

L = Ldis −
∑

log P (ys|zq, zp) + log P (ye|zq, zp) (11)

where (zq, zp) denotes the discrete unit sequence for the ques-
tion and passage, (ts, te) denotes the ground truth start and end
time, and (ys, ye) denotes the converted version at index level.

During the inference stage, we utilize the repetition of every
discrete unit cp to convert the predicted start and end indices
(ŷs, ŷe) to frame level, and then transform them to the time
level (t̂s, t̂e) as the final prediction.

3. Experiments
3.1. Datasets and Metrics

We conduct all the experiments on NMSQA dataset5[6], which
is a publicly available SQA dataset derived from SQuAD-v1.1
dataset6[39]. For the train set and the dev set, the speech is
generated with Amazon Polly Text-to-Speech service7. And for
the test set, the speech is read by 60 human speakers, includ-
ing 30 males and 30 females. NMSQA contains 297.18 hours,
37.61 hours, and 2.67 hours of audio for the train, dev,
and test set, respectively. Following the previous work [6],
we evaluate the performance of SQA using the Frame-level F1
score (FF1) and Audio Overlapping Score (AOS) based on the
predicted time intervals. Higher FF1 and AOS mean more over-
lap between the predicted and ground truth spans.

5https://github.com/DanielLin94144/
DUAL-textless-SQA

6https://rajpurkar.github.io/SQuAD-explorer
7https://aws.amazon.com/polly
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3.2. Implementation Details

We utilize ByT5lephone8[19] as the PLM. The learning rate is
set to 3e-5 and warm-up updates are set to 1k. We train the
model up to 15 epochs to avoid overfitting, and the batch size
is set to 128. We use Adam optimizer [40] to optimize the pa-
rameters in our model with β1 = 0.9, β2 = 0.98. We set the
width multiplier m to 1/3. For all the experiments, we select
the model which performs the best on dev set in FF1 and eval-
uate it on test set. All experiments are conducted on 4 Nvidia
Tesla-V100 GPUs. The training process lasts several hours.

3.3. Main Results

As shown in Table 1, we compare our model with four
SQA baselines, including SB [41], W2v2 [42], DUAL [6],
ByT5lephone-small [19]. Our model achieves an improvement
of 7.5 FF1 and 8.0 AOS over previous best end-to-end model
with less than half of the parameters. Moreover, we surpasses
the cascaded SQA models for the first time, which further veri-
fies the effectiveness of Textless NLP in SQA task.

Table 1: FF1 and AOS scores on the NMSQA test set.
“#Params” indicates the number of parameters of the model.
Best results are highlighted in bold.

Model #Params FF1 AOS

Cascade Models (w/ ASR transcripts)
SB [41] 148M 17.3 15.3
W2v2 [42] 148M 64.2 57.4

End-to-End Models (w/o ASR transcripts)
DUAL [6] 148M 55.9 44.1
ByT5lephone-small [19] 299M 61.1 53.3
GhostT5 (ours) 121M 68.6 61.3

3.4. Model Analysis

3.4.1. Ablation Study

To verify the effectiveness of each component in our method,
we perform several ablation experiments on NMSQA dataset,
whose results are shown in Table 2. We can clearly observe that
FF1 drops by 4.7, 4.1 and 1.2 and AOS drops by 5.1, 3.4, and 2.8
when knowledge distillation, Softmax and ReLU are removed,
respectively. The drop caused by knowledge distillation is the
largest of the three components, which indicates that knowledge
distillation can significantly transfer knowledge from the full-
sized teacher model to the pruned model to compensate for the
pruned features and improve the performance.

3.4.2. Effect of the Width Multiplier

In our model, the width multiplier is set to 1/3. Table 3 demon-
strates the experimental results with different width multiplier.
We can find that as the width multiplier grows, FF1, AOS and
the number of parameters also increase. In particular, the model
performs best when the width multiplier increases to 1, which
indicates that the ghost module can be applied directly to the
ByT5lephone for better performance, while the additional pa-
rameters can be ignored.

3.4.3. Performance for Poor ASR Accuracy

We also conduct an experiment to compare the performance of
the cascade W2v2 model and GhostT5 model at different levels

8https://github.com/Splend1d/T5lephone

Table 2: Ablation study of knowledge distillation (KD), Soft-
max, and ReLU. Results are reported on NMSQA dataset.

Models FF1 AOS

GhostT5 68.6 61.3

w/o KD 63.9(↓ 4.7) 56.2(↓ 5.1)
w/o Softmax 64.5(↓ 4.1) 57.9(↓ 3.4)
w/o ReLU 67.4(↓ 1.2) 58.5(↓ 2.8)

Table 3: Experimental results with different width multiplier.

Multiplier #Params FF1 AOS

1/3 121M 68.6 61.3

1/2 154M(↑33M) 68.9(↑0.3) 61.7(↑0.4)
2/3 241M(↑120M) 69.3(↑0.7) 62.1(↑0.8)
1 303M(↑182M) 69.6(↑1.0) 62.4(↑1.1)

of WER. Specifically, we divide the NMSQA dev set into sub-
sets based on the WER obtained with W2v2 ranging from 0%
to 70%. As shown in Figure 2, FF1 score for W2v2 decreases
significantly and continuously as the WER increases. In con-
trast, GhostT5 achieves similar FF1 scores for different levels
of WER, even when the WER reaches 70%. The reason is that
GhostT5 does not rely on ASR transcripts. Moreover, GhostT5
performs better than W2v2 when WER exceeds 5%, which fur-
ther verifies the superiority of our model.
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Figure 2: FF1 score for GhostT5 and cascade W2v2, evaluated
on small groups of NMSQA dev set at different levels of WER.

4. Conclusions
In this paper, we propose a novel textless SQA framework termd
GhostT5. Ghost module is introduced to generate more features
with cheap operations. Experiments and analysis demonstrate
the effectiveness of our proposed method, which can improve
the performance with fewer parameters. In the future, we will
explore how to further leverage Textless NLP technique to im-
prove the SQA framework.
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