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Abstract
Internal language model estimation (ILME) has demonstrated
its efficacy in domain adaptation for end-to-end (E2E) ASR.
However, the performance improvement is achieved at the ex-
pense of computational cost, compared with conventional shal-
low fusion. To estimate the internal language model prior, one
should run an extra forward operation on either ASR decoder
or a separate density ratio (DR) language model (LM) for each
decoding utterance. In this paper, we propose to employ knowl-
edge distillation (KD) approach to realize efficient ILME for the
Listen-Attend-Spell (LAS) E2E ASR model. First, we exten-
sively explore diverse ILME and DR methods. We find that the
ILM can be approximated with a DR-LM much smaller than the
original ASR decoder. Furthermore, to reach the performance
of ILME, we propose to employ the estimated ILM as teacher
to teach a small DR-LM by KD. In this way, we achieve the best
of both worlds: comparable performance to ILME and high ef-
ficiency of DR with a small DR-LM.
Index Terms: ASR, language model, ILME, density ratio,
knowledge distillation, efficiency

1. Introduction
One advantage of the end-to-end (E2E) ASR modeling frame-
work comes from the capability of joint acoustic and language
model learning via a network pipeline which is normally com-
prised of an encoder and a decoder [1–5]. To date, E2E ASR
has revealed its edge in terms of data and model scaling as-
pects. Given more data, as well as larger model size, E2E ASR
can always push the recognition performance to higher level,
approaching human speech recognition capability [6, 7].

Although encouraging, E2E ASR still has some limitations,
one of them being the domain mismatch problem. Specifically,
an input utterance from an unseen domain will result in sub-
optimal recognition performance of E2E ASR. In such situa-
tion, one would resort to domain adaptation techniques to alle-
viate the performance drop [8–10].

One of the most potent domain adaptation techniques is lan-
guage model (LM) fusion. There are diverse LM fusion meth-
ods, such as component fusion [11], deep fusion [12], cold fu-
sion [13], and shallow fusion [14]. All these methods com-
ply with a common formula implicitly or explicitly, that is,
Ŵ = argmaxW Pθ(W |X)PELM(W ) where θ represents pa-
rameters of E2E ASR and Pθ(W |X) is ASR output. W is
a token sequence and X is a corresponding speech sequence.
PELM(W ) comes from external LM (ELM). Despite effective-
ness, the fusion results with the above-mentioned methods are
sub-optimal. This is because the formula is hard to be inter-
preted with Bayes rule, with which the recognition formula
should be Ŵ = argmaxW Pθ(X|W )PELM(W ). Therefore,

to realize a Bayes-style LM fusion approach, we need to con-
vert the posterior Pθ(W |X) ≡ Pθ(X|W )Pprior(W ) to a like-
lihood, namely Pθ(X|W ) ≡ Pθ(W |X)/Pprior(W ). As we
normally perform logarithmic operation in speech recognition,
such a division means a subtraction operation in terms of loga-
rithm. Consequently, we need to estimate the prior Pprior(W ),
and it is the output of the so-called internal language model
(ILM) which is implicitly learned from training transcripts.

In order to estimate the piror, [15] proposed a hybrid auto-
regressive transducer (HAT) method, and [16] proposed a more
general density ratio (DR) approach. In DR method, one need
to estimate Pprior(W ) by a separate LM (DR-LM) in addi-
tion to a normal external LM to conduct LM fusion. More
recently, a bunch of works attempt to estimate the prior us-
ing the ASR decoder module instead, including encoder out-
put zeroing-out [17], encoder output averaging [18], learning
based mini-LSTM [18], and the label-synchronous context vec-
tor learning (LSCL) [19]. These decoder-based prior estimation
methods are called ILM estimation (ILME). It is shown that
both DR and ILME can yield notable ASR performance im-
provement over shallow fusion for both intra- and cross-domain
adaptation tasks, and ILME usually outperforms DR [17–19].
However, the computation of ILME depends on the size of ASR
decoder. If ASR decoder is large, this entails much more com-
putational cost1 compared with the normal shallow fusion, and
it is not desirable where faster inference is decisive. Our prelim-
inary tests show that ILME is 19% slower than shallow fusion,
which is measured by throughput, i.e., the number of processed
audio seconds per second for a single GPU.

In this paper, we propose to employ knowledge distillation
(KD) approach to realize efficient ILME for the Listen-Attend-
Spell (LAS) E2E ASR model [20]. We first compare different
ILME and DR methods using both perplexity and character er-
ror rate (CER) metrics. The results show that the ILM can be ap-
proximated with a small LSTM-based DR-LM. Moreover, in or-
der to make it reach the performance of the best ILME method,
we propose to employ the ILM as teacher to teach this DR-
LM via knowledge distillation [21, 22]. Eventually, our KD-
based ILME approach achieves comparable ASR performance
to decoder-based ILME, while the number of ILM-related pa-
rameters is reduced by 95%, which suggests more efficient in-
ference.

The main contributions of the paper are as follows. First,
we have conducted a comprehensive comparison between the
ILME and DR methods. Secondly, we propose to close the per-
formance gap between ILME and DR by KD, yielding compa-

1In this paper, computational cost refers to memory or CPU/GPU
computing resource consumption. We believe that significant reduc-
tion of ILM-related parameters will result in less memory footprint and
faster inference speed under either CPU or GPU setting.
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rable performance to ILME with much reduced computational
cost. Thirdly, we have conducted a thorough analysis for the
proposed method.

2. Related work
To reduce the computational cost of the ILME-based LM fu-

sion, [23] recently proposed to employ low-order n-gram LM
as DR-LM to fuse the RNN-Transducer (RNN-T) ASR model.
It has been shown that a bigram DR-LM can yield significant
performance improvement, compared with traditional shallow
fusion. Since the decoder in [23] is a single layer LSTM mod-
ule, we hypothesize that the ILM is rather weak, which has also
been shown in [24], and hence a lower order bigram DR-LM is
sensible. In this work, we use a stronger LSTM decoder with
four layers in LAS framework. Our preliminary experiments
show that traditional N-gram DR-LM is inferior to decoder-
based ILME. Therefore, we employ a smaller LSTM to estimate
DR-LM instead.

Another related work is [25], which proposed a residual LM
approach to directly model the residual factor of external and
internal LMs. As a result, computational cost in inference is
hugely reduced. However, residual LM depends on ASR model,
which means the trained residual LM can not be reused for other
ASR models. Our method keeps the internal and external LMs
independent so that the external LM can be flexibly applied to
other ASR models. Moreover, for each ASR model, we only
have to estimate the ILM once and then it can be combined
freely with any external LMs.

3. Proposed method

3.1. Internal language model estimation

As mentioned in Section 1, the LM shallow fusion process of
E2E ASR complies with the following formula:

Ŵ = argmax
W

[logPθ(W |X) + logPELM(W )] (1)

For domain adaptation, an external LM fused with the ASR
model is decisive when more domain-specific text data is avail-
able. However, what Equation (1) conveys cannot be interpreted
with Bayes rule, which advocates using the following formula
to proceed with inference instead:

Ŵ = argmax
W

[logPθ(X|W ) + logPELM(W )] (2)

where log posterior term logPθ(W |X) in Equation (1) is
changed to log likelihood logPθ(X|W ) in Equation (2). Ac-
cording to Bayes rule, their relation can be written as:

logPθ(W |X) ≡ logPθ(X|W ) + logPprior(W ) (3)

where Pprior(W ) is implicitly learned from the transcripts dur-
ing E2E ASR model training. As a result, to realize a Bayes-
style LM fusion method for E2E ASR model, Equation (1)
should be changed to:

Ŵ = argmax
W

[logPθ(W |X)− logPprior(W )

+ logPELM(W )] (4)

In practice, the general implementation of Equation (4) is:

Ŵ = argmax
W

[logPθ(W |X)− λILM logPprior(W )

+ λELM logPELM(W )] (5)

where λILM and λELM are scaling factors which are normally
tuned from the dev data set. Equation (5) describes an ILME-
based LM fusion method, and our focus is on how to estimate
the term logPprior(W ).

As introduced in Section 1, there are two categories of ap-
proaches to estimate the term logPprior(W ). The simpler one
is the so-called density ratio method. The other one is to esti-
mate the prior from the ASR decoder directly, denoted as ILME
in this work. For the ILME category, we employ the encoder
output zeroing-out [17] and LSCL method [19].

3.2. Reducing computational cost for ILME

As observed from Equation (5), we need to estimate the ex-
tra term λILM logPprior(W ) for each decoding step, compared
with conventional shallow fusion. Suppose such a term is esti-
mated via an independent LM with the same size as the decoder
of the ASR model. Both DR and ILME require the same extra
computational cost. In this paper, we attempt to enjoy the per-
formance gain from ILME but with the minimal computational
cost. Basically, we follow density ratio framework since the
DR-LM is standalone. We can change the model size of DR-
LM directly to control computational cost, while that of ILME
methods depends on the size of the ASR decoder.

In practice, assuming that an ILME method has already
obtained desirable ASR results, we fix it and start with build-
ing an LSTM-based DR-LM with similar size as our ASR de-
coder (LSTM with 4-layer-1024-neuron). Then we reduce the
size of the DR-LM step-by-step, and bring it down to as small
as a 2-layer-256-neuron LSTM, which is much smaller than
the ASR decoder. We found that such a small DR-LM can
still achieve notable performance improvement over the con-
ventional shallow fusion method but a little bit performance
drop compared with the ILME method. To make such a small
DR-LM achieve comparable results to ILME, we utilize the
estimated ILM distribution from ILME to teach the DR-LM,
i.e., employing knowledge distillation approach [21] to proceed
with training loss as follows:

L(θDR) = αLGT(θDR) + (1− α)LILME-decoder(θDR) (6)

where LGT(θDR) is the cross-entropy loss between DR-LM out-
put and ground truth labels, LILME-decoder(θDR) is the cross-
entropy loss between the output distributions of DR-LM and
ILME, and α is a hyper-parameter balancing these two losses
during training.

4. Experiments and results

4.1. Experimental setup

We conduct experiments on our in-house anonymized Mandarin
speech, which is extracted from short-video covering diverse
speaking styles, topics and background music/noise. All ASR
models for the experiments are LAS with transformer encoder,
{layer, dim}={18, 512}, and LSTM decoder with different con-
figurations.The primary one is trained with 100k hours tran-
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Figure 1: Effects of ILM distillation from model parameter reduction and CER performance perspectives for both intra- and cross-
domain LM fusion tasks

scribed speech (zh-100kh). To verify the efficacy of our pro-
posed method on limited-resource scenarios, we extract two
subsets from the full training set and train another two ASR
models, with 10k hours (zh-10kh) and 1k hours (zh-1kh) respec-
tively. We reduce the size of decoders properly for zh-10kh and
zh-1kh to avoid overfitting issue. Details of all ASR models are
listed in Table 1.

Table 1: Overview of ASR models with the same Transformer
encoder configurations, {layer, dim}={18, 512}, but different
decoder configurations ({layer, dim}), depending on training
data amount.

ASR Model Train data (kh) Decoder #param

zh-100kh 100.0 {4, 1024} 175M
zh-10kh 10.0 {2, 1024} 142M
zh-1kh 1.0 {2, 256} 109M

For language modeling, we mix transcripts of Mandarin
100kh ASR training data and 60GB web-crawled Mandarin
text to train a Long Short-Term Memory Projected (LSTMP)
[26] LM, configured with {layer, dim, proj}={3, 4096, 1024}
(130M parameters). The resulting LM is used as the external
LM for intra-domain fusion. The corresponding intra-domain
testset contains 3610 utterances (denoted as Zh). As for cross-
domain testing, we train a separate medical domain LM with
{layer, dim, proj}={2, 2048, 512} LSTMP, using the same
100kh transcripts and another 2GB medical domain text, and
then evaluate the ASR performance on a medical testset con-
taining 2407 utterances (denoted as Med). During DR-LM
training and ILM knowledge distillation, we use only the corre-
sponding ASR training transcripts. Distillation is performed for
60k steps using Adam optimizer [27] and a tri-stage exponential
scheduler with 5e-4 peak learning rate.

4.2. Baseline results

Table 2 shows the baseline results using zh-100kh model. Here
we consider two decoder-based ILME methods, ILME-Z and
ILME-L. ILME-Z denotes the method in [17], where the atten-
tion context vector is simply zeroed out. ILME-L refers to the
LSCL method [19]. We can see that both ILME-Z and ILME-
L achieve the overall best performance. Our goal is to achieve
performance as close to ILME as possible, but with little extra
computational cost over SF. As recommended in [23], we also
build a 2-gram LM with ASR training transcripts and use it as
DR-LM (DR-2gram), but it doesn’t achieve comparable results

Table 2: ASR Model zh-100kh CER (%) results of diverse set-
tings: baseline (No LM), shallow fusion (SF), LSTM-based
DR (DR-LSTM), n-gram-based DR (DR-2-gram) and two ILME
methods. The numbers in brackets are relative CER reduction
over SF.

CER Zh (intra-domain) Med (cross-domain)

No LM 7.61 5.07
SF 7.39 4.10
ILME-Z 7.18 (2.8%) 3.78 (7.8%)
ILME-L 7.15 (3.2%) 3.77 (8.0%)
DR-LSTM 7.25 (1.9%) 3.77 (8.0%)
DR-2gram 7.36 (0.4%) 3.97 (3.2%)

to the ILME or DR-LSTM methods2. Thus, we turn to approx-
imating the ILM by a separate small neural network based LM
in what follows.

4.3. Internal language model distillation

Experiments in this section are conducted on ASR model zh-
100kh. We consider LSTM-LMs with five diverse configura-
tions. The number of parameters for each configuration, as well
as ILME-Z and ILME-L, is presented in Figure 1 (a). Note that
our LAS decoder is also a {4, 1024} LSTM but the number of
ILM-related parameters (97.4M) is much greater than that of a
separate {4, 1024} LSTM-LM (44.6M). This is because in LAS
decoder, we concatenate the attention context vector (2048 di-
mension, projected from 512) to the output of each LSTM layer
(1024 dimension) and then feed it to the next layer as input.

To begin with, we use ILME-Z, the most straightforward
ILME method, as the teacher, and fix α = 0.0 in Equation (6) to
perform knowledge distillation (DR-KD-Z). As a comparison,
we also conduct naive density ratio (DR) fusion with the same
DR-LM configurations to see how much benefit we can obtain
from distillation. As shown in Figure 1 (b) (c) (d), naive DR is
able to get CER close to ILME-Z if DR-LM is relatively small
({2, 256} or {2, 512}), but degrades CER greatly when DR-LM
is as large as {4, 1024}, although the perplexity is getting lower.
We hypothesize that this is due to over-training that makes DR-
LM a better LM but its behavior has already deviated too much
from the real ILM. On the contrary, DR-KD-Z does not suffer
from larger DR-LM since the learning target is an ILM (ILME-
Z).

Besides, DR-KD-Z gets slightly better results than naive

2We also try even higher N-gram LM, but no further performance
gains are obtained.
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Table 3: CER (%) results of using different ILME teachers for
KD training, where the student is {2, 256} for zh-100kh and
zh-10kh, {2, 128} for zh-1kh, and α = 0.2. DR has the same
DR-LM configuration as the KD student’s.

ASR Model zh-100kh zh-10kh zh-1kh
Testset Zh Med Zh Med Zh Med

No LM 7.61 5.07 8.98 6.87 16.93 14.90
SF 7.39 4.10 8.79 5.58 16.33 12.72
DR 7.25 3.77 8.64 4.88 15.42 10.17
ILME-Z 7.18 3.78 8.69 4.99 16.10 9.76

DR-KD-Z 7.19 3.75 8.64 4.89 15.74 9.64
ILME-L 7.15 3.77 8.54 4.84 15.35 9.27

DR-KD-L 7.12 3.73 8.54 4.76 15.41 9.36

DR though its perplexity is much higher than DR’s, as shown in
Figure 1 (b). Therefore, we conclude that the perplexity of ILM
is not that critical to get a good ASR performance. What does
matter is the estimated ILM should behave like what the ASR
decoder has learned from the training transcripts.

In general, DR-KD-Z achieves comparable performance to
ILME-Z, using a DR-LM as small as {2, 256} LSTM. The num-
ber of ILM-related parameters is reduced by 95%, from 97.4M
to 5.4M. Moreover, we find it gets better results if this small
DR-LM is trained with α > 0. Figure 2 plots the CER ver-
sus α in Equation (6) for KD training on both intra- and cross-
domain tasks. We can see that when the cross-entropy loss
against ground truth labels is considered, the performance can
be further improved. For instance, DR-KD-Z gets even better
cross-domain results than the teacher ILME-Z when α = 0.2.

4.4. Knowledge distillation with distinct teachers

In addition to zh-100kh, we also apply DR-KD on the mod-
els zh-10kh and zh-1kh to verify the generalization capacity of
our proposed method. Moreover, we replace the teacher ILME-
Z with ILME-L which has demonstrated better performance in
this and prior works [19]. As we can see in Table 3, ILME-L
outperforms ILME-Z, and it is verified that a better teacher does
lead to a better student. Besides, the proposed DR-KD always
achieves comparable results to the ILME teacher with signif-
icantly less computation for inference. Moreover, comparing
with the naive DR which expends the same amount of com-
putation, DR-KD-L achieves consistently better performance.
Particularly, it obtains 8.0% relative reduction on CER in the
limited-resource (zh-1kh) cross-domain scenario. Finally, re-
sults of zh-100kh are also indicated in Figure 1 for better clarity.

4.5. Robustness property

As shown in Equation (5), there are two fusion weights,
namely, λILM and λELM, to tune for both DR and ILME based
LM fusion. Here, we are curious about how these weights af-
fect the performance. Interestingly, Figure 3 illustrates that the
naive DR is much more sensitive, while both ILME-L and the
proposed DR-KD-L methods are robust, particularly to λILM.
From Figure 1 (b), we see that the estimated ILM of the ILME
method is a much weaker LM, as the perplexity is rather higher
than that of the DR-LM. We hypothesize that for ILME-L and
DR-KD-L, the overall distribution across the entire token set is
rather smoother, and hence it is less sensitive to the change of
λILM dynamics, compared with the naive DR method of which
the DR-LM is a real LM.

0.1 0.2 0.3 0.4
0.1

0.2

0.3

0.4
λELM

zh
-1
kh

15.42

DR

0.1 0.2 0.3 0.4

15.35

ILME-L

0.1 0.2 0.3 0.4

15.41

DR-KD-L

20

25

30

0.1 0.2 0.3

0.1

0.2

0.3
zh
-1
0k

h 8.64

0.1 0.2 0.3

8.54

0.1 0.2 0.3

8.54

10.0

12.5

15.0

0.1 0.2 0.3
0.1

0.2

0.3

0.4

zh
-1
00

kh

7.25

0.1 0.2 0.3 0.4

7.15

0.1 0.2 0.3 0.4
λILM

7.12

8
10
12
14

Figure 3: Comparison of DR, ILME-L and the proposed
DR-KD-L on the robustness to fusion weights, across three
ASR models, where left-vertical axis refers to λELM, bottom-
horizontal axis refers to λILM, and the bars at the side of right-
vertical axis represent CER dynamics, of which darker color
means higher CER.

5. Conclusion
In this paper, we proposed a knowledge distillation approach to
improve the efficiency of internal language model estimation for
language model fusion based domain adaptation. In particular,
we first compare recognition results between diverse ILME and
density ratio based LM fusion methods, and then select ILME
as teacher. In order to reduce computational cost of ILME and
avoid performance drop at the same time, we let the ILME teach
a smaller LSTM-based density ratio LM via knowledge distil-
lation such that the smaller LM yields comparable results to the
corresponding teacher with 95% fewer ILM-related parameters.
We verified the efficacy of the proposed method on ASR models
trained with 100k, 10k and 1k hours of Mandarin data, and the
results demonstrated the feasibility and robustness of the pro-
posed method on both intra- and cross-domain adaptation tasks.
As future work, we will try to apply this approach to multilin-
gual ASR and multilingual LM.
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and H. Ney, “Investigating methods to improve language model
integration for attention-based encoder-decoder ASR models,” in
Interspeech. ISCA, 2021, pp. 2856–2860.

[19] Y. Liu, R. Ma, H. Xu, Y. He, Z. Ma, and W. Zhang, “Internal
language model estimation through explicit context vector learn-
ing for attention-based encoder-decoder ASR,” in Interspeech.
ISCA, 2022, pp. 1666–1670.

[20] W. Chan, N. Jaitly, Q. V. Le, and O. Vinyals, “Listen, attend
and spell: A neural network for large vocabulary conversational
speech recognition,” in ICASSP. IEEE, 2016, pp. 4960–4964.

[21] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in
a neural network,” arXiv preprint arXiv:1503.02531, 2015.

[22] Y. Shi, M.-Y. Hwang, X. Lei, and H. Sheng, “Knowledge distil-
lation for recurrent neural network language modeling with trust
regularization,” in ICASSP 2019-2019 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2019, pp. 7230–7234.

[23] H. Zheng, K. An, Z. Ou, C. Huang, K. Ding, and G. Wan, “An em-
pirical study of language model integration for transducer based
speech recognition,” in Interspeech. ISCA, 2022, pp. 3904–3908.

[24] M. Ghodsi, X. Liu, J. Apfel, R. Cabrera, and E. Weinstein, “Rnn-
transducer with stateless prediction network,” in Proc. of ICASSP.
IEEE, 2020.

[25] E. Tsunoo, Y. Kashiwagi, C. P. Narisetty, and S. Watanabe,
“Residual language model for end-to-end speech recognition,” in
Interspeech. ISCA, 2022, pp. 3899–3903.

[26] H. Sak, A. W. Senior, and F. Beaufays, “Long short-term mem-
ory recurrent neural network architectures for large scale acoustic
modeling,” in INTERSPEECH. ISCA, 2014, pp. 338–342.

[27] D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” arXiv preprint arXiv:1412.6980, 2014.

1343


