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Abstract
Echo cancellation and noise reduction are essential for full-
duplex communication, yet most existing neural networks have
high computational costs and are inflexible in tuning model
complexity. In this paper, we introduce time-frequency dual-
path compression to achieve a wide range of compression ra-
tios on computational cost. Specifically, for frequency com-
pression, trainable filters are used to replace manually designed
filters for dimension reduction. For time compression, only us-
ing frame skipped prediction causes large performance degra-
dation, which can be alleviated by a post-processing network
with full sequence modeling. We have found that under fixed
compression ratios, dual-path compression combining both the
time and frequency methods will give further performance im-
provement, covering compression ratios from 4x to 32x with
little model size change. Moreover, the proposed models show
competitive performance compared with fast FullSubNet and
DeepFilterNet.
Index Terms: echo cancellation, noise suppression, computa-
tional cost compression, dual-path transformer-based network

1. Introduction
Echo and noise are the main distractions in full-duplex voice
communication systems, resulting in disruptions and difficul-
ties in comprehending the speech of participants. With the rapid
advancement of deep learning, neural networks have achieved
remarkable performance on signal processing tasks. This work
focuses on the joint task of acoustic echo cancellation (AEC)
and noise suppression (NS) with low-complexity models to fa-
cilitate real-time communication in the real world.

Deep learning-based networks have been used to perform
denoising tasks [1, 2, 3] and echo cancellation [4, 5, 6]. Despite
the existence of low-complexity models for denoising, such as
DeepFilterNet [7], tuning their computational cost is risky since
the model size changes as the hyper-parameters. The Fast Full-
SubNet [8] explores the time and frequency compression meth-
ods but it has not balanced the compression along different axes
and most compressed variants still exhibit large complexity.
Compared with NS, models for the joint AEC and NS task usu-
ally take multiple signals including microphone signals, refer-
ence signals and error signals generated by linear AEC (LAEC)
algorithm [9]. Most existing models only report real time fac-
tors (RTFs) ranging from 0.05 to 0.5, lacking detailed calcu-
lation cost numbers, and still cannot meet the needs of mobile
platforms [9, 10, 11].

We choose the dual-path transformer-based full-subband
network (DPT-FSNet) [12] to explore compression methods for
three reasons. First, the model has exhibited high wide-band
perceptual evaluation of speech quality (WB-PESQ) scores on

the NS task with a small number of parameters but suffers from
large computational cost. Second, DPT-FSNet is conducted
on complete time-frequency (T-F) feature maps, indicating its
complexity being closely related to the number of frames and
frequency bands. Third, the model involves a 2D convolution
encoder, a dual-path transformer and a 2D convolution decoder,
implying that compression methods should be applicable to dif-
ferent modules.

To address the issues of real-time applications, time and
frequency compression methods are explored for model com-
plexity reduction. We propose Mel scale-based trainable com-
pression and frame-skipped prediction followed by a post-
processing network for each axis, respectively. The Mel scale-
based trainable filters are used for frequency compression in-
stead of using manually fixed filters on the amplitude spectrum;
the frame-skipped prediction is able to compress the time se-
quence length but suffers from unmatched masks. An additional
light post-processing network with low complexity can alleviate
the degradation by utilizing full-sequence modeling. Moreover,
under fixed compression ratios, appropriate integration of time
and frequency methods, named dual-path compression, can ob-
tain minimized performance degradation by alleviating the large
information loss caused by excessive compression.

Experimental results show that Mel scale-based trainable
compression outperforms classic equivalent rectangular band-
width (ERB) and Mel filters. In time compression, post-
processing networks obtain more than 0.2 WB-PESQ improve-
ment from 4x to 32x compression ratio. Furthermore, the dual-
path compression achieves approximately 0.1 WB-PESQ higher
than single-path compression on 8x and 16x ratios.

We claim that the proposed models can cover a wide range
of computational complexity without reducing model sizes and
exhibit competitive performance under the joint tasks of AEC
and NS. Specifically, the multiply-accumulate operations per
second (MACs/s) of the presented models cover the range from
100M to 2000M.1 Moreover, we compared the proposed mod-
els with DeepFilterNet [7] and Fast FullSubNet [8]. The results
show that our models outperform fast FullSubNet and achieve
similar performance as DeepFilterNet but with more flexible
compression ratios and fewer parameters.

2. Ultra low-complexity DPT-FSNet
2.1. Online DPT-FSNet

The offline DPT-FSNet processes the T-F feature with a 2D con-
volutional encoder/decoder and a dual-path transformer (Fig.1)
[12]. To enable streaming processing with reduced computa-

1A model with 160M MACs/s has an RTF of 0.01 using Intel (R)
Core (TM) i7-7700 @ 3.60GHz in the real-world application.
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Figure 1: A pipeline for joint echo and noise suppression. The
boxes with dashed lines are optional modules for compression.

tional cost, the online DPT-FSNet was redesigned. First, the
input layer accepts multiple input signals, including the micro-
phone signal d, the reference signal x and the error signal ê
generated by LAEC [13]. The output layer generates individual
masks for each input, and the final output is the summation of
all filtered signals. Second, to reduce computational complex-
ity, long short-term memory layers in the dual-path transformer
were replaced with a single gated recurrent unit (GRU) placed
after the first attention layer. Linear attention is adopted as its
linear complexity and memory use [14]. Third, the subband at-
tention and GRU layers are unidirectional for online processing,
while the fullband ones are bidirectional.

The input spectra are fed into an input layer, a T-F module
and an output layer sequentially. The compression and decom-
pression modules are inserted before the input and output lay-
ers, respectively. The input layer together with the compression
transforms stacked spectra with dimension 2C × T × F into
E × T × F , where T and F are numbers of frames and fre-
quencies, E is the feature dimension for each T-F bin and 2C
is the stacked real and imaginary channels. The output layer to-
gether with the decompression accepts a feature with dimension
E × T × F and generates the complex masks with dimension
2C×T×F . Both the input and output layers adopt 1×1 convo-
lution. We present several methods of time and frequency com-
pression that aim to reduce the computational cost with min-
imized performance degradation and small model sizes (e.g.,
parameters less than 500K are feasible for current devices).

2.2. Frequency compression

2.2.1. Manually fixed filters

We explore fixed triangle filters based on ERB [15] and Mel
scale [16]. The compressed features are calculated by,

Z[c, t, b] = log(

high[b]∑

f=low[b]

|X[c, t, f ]| ×Wc[b, f ]), (1)

where |X[c, t, f ]| is the modulus of the complex spectrum with
signal index c, frame index t and frequency index f , W [b, f ]
is the weight for bth filter on frequency f , low[b] and high[b]
are the start and end frequencies of bth filter, Z is the output
feature with dimension C × T × B. The input layer with 1 ×
1 convolution transforms the compressed feature Z into E ×
T × B for the following blocks. For decompression, we use
Moore–Penrose inverse of filter weight W to linearly transform
the feature into dimension E × T × F for the output layer.

Figure 2: Dual-path compression and decompression.

2.2.2. Trainable filters

Different from manually fixed filters, complex spectrum-based
compression uses trainable transformations. We follow specific
scales to split bands. The real and imaginary parts of complex
spectra are stacked and transformed into the high-level feature
space using a linear transformation as follows:

Z[:, t, b] = Flatten(X[0 : C, t, low[b] : high[b]])×W, (2)

where W ∈ R(△B[b]×C)×E converts spectra into E × T ×B,
△B[b] = high[b] − low[b]. With trainable compression, the
1 × 1 convolution in the input layer is redundant and should
be removed. For decompression, another linear transformation
is used to decompress the E-dimensional vector into dimension
4C×△B[b] for the output layer processing, where we use 4C×
△B[b] instead of E ×△B[b] to save the model size.

2.3. Time compression

We use skip prediction and a post-processing network for time
compression. The skip prediction module concatenates pre-
vious frames and predicts the current mask. Meanwhile, a
post-processing network is employed to reduce the performance
degradation caused by unmatched output. Compared with Fast
FullSubNet [8] compressing the time axis for subband model
only, our compressed feature is used for both fullband and sub-
band parts. Moreover, our post-processing network had only
67K parameters and 15M MACs/s.

2.3.1. Skip prediction

Fig.2 illustrates the processing procedure for skip prediction.
At each r frame interval, the compression module accepts the
stacked current and history frames and uses a linear transfor-
mation to generate features with dimension E×T ′ ×F , where
T ′ = T/r. For decompression, we use the generated features
for the current frame and copy it r − 1 times for future frames.

2.3.2. Post-processing network

Skip prediction results in significant performance degradation
due to unmatched output. To alleviate this issue, we em-
ploy a light post-processing module for full-sequence process-
ing. Fig.1(c) shows the architecture of the post-processing net-
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work, which consists of a feature compression module, a 1-layer
Gated Recurrent Unit (GRU), a feature decompression module,
and an output layer. With the limited modeling ability of the
1-layer GRU, we use the log power spectra of both the error sig-
nal ê and the signal from the previous stage as inputs. The input
feature is of dimension 2 × T × F . We conduct the frequency
compression with ratio 2 to save computational cost. The out-
put layer employs stacked 1×1 convolutions, linear transforms,
and a sigmoid activation to predict real-valued masks.

2.4. Dual-path compression

Dual-path compression combines time and frequency ways to
achieve ultra-computational cost reduction. The search space
increases linearly corresponding to the exponentially increasing
compression ratio. For example, the search space is 3 regard-
ing to compression ratio 4 with base ratio 2 (i.e. T-F compres-
sion ratios of 1 × 4, 2 × 2 and 4 × 1). The best compression
combination is unknown, so grid search is used to obtain the
optimal combination. The orders of time and frequency com-
pression exhibit little performance difference. Thus we adopt
time compression and then frequency compression followed by
frequency decompression and time decompression (Fig.2).

2.5. Discussion and analysis

Reducing model complexity can be easily achieved by shrink-
ing model size. For example, a smaller E will bring a lower
computational complexity as well as the model size. Since the
online DPT-FSNet already has a small size (∼100K), shrinking
E will cause significant performance degradation (Fig.3).

The proposed compression can cover a wide range of com-
pression ratios straightforwardly, which can be deployed on
most neural network-based front-end models. Nonetheless, the
compression and decompression modules have a certain amount
of parameters and computational complexity, resulting in low-
ering the complexity hard in large compression ratios. We will
leave compression ratios larger than 32 for future work.

3. Experimental setup
3.1. Dataset

We used simulated audios to validate the proposed methods.
Clean audios from Librispeech [17] train-clean-100 and train-
clean-360 were used to generate training and validation set
while test-clean was used to generate evaluation set. The noise
audios from DNS-Challenge [18] were split for training, valida-
tion and evaluation set, individually. The echos in the training
and validation sets were simulated using clean audios and room
impulse responses (RIRs) taken from a published dataset [19]
while echos in the evaluation set were real-recorded taken from
AEC-challenge [6] which covered various devices and signal
delays [9]. The simulated training, validation and evaluation set
had durations of 530h, 10h and 10h. All audios were sampled
in 16 kHz with lengths ranging from 9 to 10 seconds.

In detail, we considered 3 scenarios including far-end sin-
gle talk (ST-FE), near-end single talk (ST-NE) and double talk
(DT). The training and validation set shared the same data sim-
ulation configuration. Both the signal-to-echo ratio (SER) and
the signal-to-noise ratio (SNR) were uniformly sampled from
−5 to 15 dB. The near-end speakers were not present in 10%
of the data while the far-end speakers were not present in 25%
of the data. Approximately 90% audios were noisy while 10%
only contains speech. The evaluation set had SERs and SNRs of

Figure 3: Performance of different compression methods under
the double talk scenario.

−5 dB, 5 dB, 15 dB and +∞. SER equal to +∞ corresponded
to ST-NE scenario while SER equal to −∞ corresponded to
ST-FE scenario. These settings ensured that the performance
improvement could be verified under different environments.
Due to the limited pages, we report the average performance
in the aforementioned 3 scenarios.

3.2. Performance metrics

The ST-FE scenario was evaluated by echo return loss enhance-
ment (ERLE). ST-NE and DT scenarios were evaluated by
scale-invariant signal-to-noise ratio (SI-SNR) [20], WB-PESQ
[21] and short-time objective intelligibility (STOI) [22]. The
widely used C version of WB-PESQ is adopted2.

3.3. Model setup

The STFT and iSTFT used a window size of 20 ms and a stride
size of 10 ms. A state-space based linear filter was first used to
estimate error signal ê [23, 13]. The number of convolution lay-
ers was set to 2 in the encoder and decoder. The dual-path GRU
number was set to 1 while the dual-path attention layer number
was set to 4. The feature dimension E was set to 48. The whole
model had a parameter size of 109K and a computational cost of
1822M MACs/s. The hyper-parameter B in PostNet was fixed
to 80. The change of B had a limited effect on the parameter
size and computational cost because compression, decompres-
sion and output layer occupied a non-negligible ratio.

Models were trained using Adam optimizer on an 8-GPU
machine with a batch size of 80. Each model was optimized
with 105K iterations. The results were averaged using saved
checkpoints trained in 95K, 100K and 105K iterations to reduce
the performance fluctuation.

4. Results and discussion
Different compression methods under the same DPT-FSNet ar-
chitecture were compared, as listed in Table 1. Frequency com-
pression was evaluated using manually fixed filters with ERB

2https://www.itu.int/rec/T-REC-P.862/en
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Table 1: Performance of time compression, frequency compression and dual-path compression.

Method T×F Ratio # Param. MACs/s Compression DT ST-NE ST-FE
ratio SI-SNR WB-PESQ STOI SI-SNR WB-PESQ STOI ERLE

Fast Fullsubnet - 7601K 1433M - 11.33 2.68 87.05 13.27 2.84 89.31 40.66
DeepFilterNet - 2000K 289M - 10.96 2.68 86.90 12.97 2.83 88.95 44.49
Uncompressed 1× 1 109K 1822M 1.0 12.14 2.78 87.96 13.83 2.91 89.70 46.82
FixedERB 1× 2 109K 910M 2.0 10.10 2.54 85.14 11.83 2.70 87.39 43.99
FixedMel 1× 2 109K 910M 2.0 11.18 2.69 86.82 12.88 2.83 88.71 44.33
TrainMel 1× 2 413K 937M 1.9 11.89 2.73 87.73 13.55 2.87 89.55 44.68
SkipPred 2× 1 109K 917M 2.0 11.31 2.68 86.80 13.05 2.81 88.67 40.44
+PostNet 2× 1 177K 931M 2.0 11.86 2.75 87.66 13.53 2.89 89.40 43.83

FixedERB 1× 4 109K 455M 4.0 8.88 2.40 83.17 10.56 2.56 85.71 41.64
FixedMel 1× 4 109K 455M 4.0 10.71 2.60 85.95 12.27 2.72 87.81 41.97
TrainMel 1× 4 408K 484M 3.8 11.44 2.69 86.97 13.23 2.83 89.01 42.13
SkipPred 4× 1 110K 462M 3.9 9.83 2.39 83.46 11.48 2.54 85.86 40.26
+PostNet 4× 1 177K 477M 3.8 10.88 2.61 85.98 12.61 2.76 88.05 38.35

DualPath 2× 2 481K 486M 3.7 11.59 2.72 87.44 13.49 2.88 89.26 42.63
FixedERB 1× 8 109K 227M 8.0 7.96 2.30 81.71 9.67 2.46 84.55 38.04
FixedMel 1× 8 109K 227M 8.0 9.05 2.42 83.65 10.66 2.56 86.04 41.52
TrainMel 1× 8 398K 257M 7.1 10.66 2.56 85.36 12.56 2.73 87.84 41.10
SkipPred 8× 1 111K 245M 7.4 7.64 2.14 78.26 9.44 2.32 81.74 39.42
+PostNet 8× 1 178K 250M 7.3 9.78 2.47 84.35 11.86 2.64 87.15 36.64

DualPath 2× 4 476K 261M 7.0 11.26 2.68 86.82 13.05 2.82 88.83 42.06
FixedERB 1× 16 109K 113M 16.1 6.79 2.14 79.25 8.47 2.31 82.72 36.50
FixedMel 1× 16 109K 113M 16.1 7.02 2.28 81.45 8.25 2.44 84.17 38.11
TrainMel 1× 16 381K 142M 12.8 9.78 2.40 83.37 11.76 2.58 86.49 40.48
SkipPred 16× 1 113K 121M 15.1 5.72 2.03 74.73 7.77 2.23 79.35 34.70
+PostNet 16× 1 181K 136M 13.4 9.03 2.42 83.68 11.28 2.60 86.95 35.73

DualPath 4× 4 477K 140M 13.0 10.41 2.56 85.73 12.44 2.73 88.07 39.34
FixedERB 1× 32 109K 57M 32.0 5.31 1.96 76.26 6.95 2.13 80.13 31.16
FixedMel 1× 32 109K 57M 32.0 4.27 2.19 78.76 4.98 2.35 81.95 34.35
TrainMel 1× 32 354K 84M 21.7 8.57 2.24 81.16 10.61 2.44 84.74 34.46
SkipPred 32× 1 118K 65M 28.0 4.51 2.02 74.95 6.72 2.22 79.84 30.65
+PostNet 32× 1 185K 79M 23.1 8.47 2.40 83.19 10.89 2.58 86.69 32.81

DualPath 4× 8 467K 83M 22.0 9.73 2.47 84.72 12.04 2.66 87.49 38.54

scale (FixedERB), with Mel scale (FixedMel), and trainable fil-
ters with Mel scale (TrainMel). FixedMel and FixedERB were
widely used for model complexity reduction [8, 7]. The re-
sults showed that WB-PESQ and ERLE scores of FixedMel
outperformed those of FixedERB across all compression ratios.
However, the SI-SNR of FixedMel was lower than FixedERB
on large compression ratios (e.g., 16x compression). The rea-
son might be that the SI-SNR calculation treated all frequen-
cies equally while the Mel scale emphasized the low-frequency
part more than the high-frequency part. TrainMel compression
raised a WB-PESQ improvement of more than 0.1 on 8x and
16x ratios. TrainMel increases in approximately 300K param-
eters and 30M MACs/s. Nevertheless, the model parameters
remained under 500K. Meanwhile, compression using trainable
filters could achieve similar performance with much lower com-
putational cost, for example, the performance of 4x TrainMel is
close to that of 2x FixedMel.

On time compression, we compared skip prediction (Skip-
Pred) and the one followed by the post-processing network
(+PostNet). SkipPred exhibited a significant performance
degradation compared to TrainMel. However, PostNet largely
alleviated this performance drop. At high compression ratios,
WB-PESQ scores of time compression outperformed those of
frequency compression as short frequency sequences lost much
information when the frequency compression ratio was large.

On dual-path compression, we listed the combination
of time and frequency compression to achieve optimal met-
rics. Compared with trainable compression with Mel scale
and time compression with the post-processing network, the
dual-path compression obtained higher WB-PESQ and SI-SNR
scores. For example, under 16x compression, TrainMel, Skip-
Pred+PostNet and DualPath had similar MACs while DualPath
outperformed the others by more than 0.5 dB in SI-SNR and
0.1 in WB-PESQ. One drawback of dual-path compression was

that its ERLE did not outperform those of TrainMel. This was
attributed to the post-processing network in time compression,
which caused low ERLEs and was brought to dual-path com-
pression. We will leave this problem in future work.

Compression modules occupied a part of the computational
cost, making the fair comparison tough. We exhibited several
representative compression methods with computational cost
versus SI-SNR and WB-PESQ under the DT scenario (Fig.3).
We have found that dual-path compression outperformed other
methods consistently. Moreover, we compare the models with
fast FullSubNet and DeepFilterNet with stacked spectra as the
input. We set the down-sampling factor as 8 in fast FullSubNet.
TrainMel with compression ratio 2 outperformed fast FullSub-
Net while having lower MACs/s and smaller model sizes. We
set the convolution channel number to 48 in DeepFilterNet to
match the model complexity with DualPath(2× 4). The Deep-
FilterNet and DualPath(2 × 4) achieved similar performance,
yet our model occupied only 1/4 storage of the DeepFilterNet.

5. Conclusion

In this paper, we investigate dual-path compression for joint
echo and noise suppression. We propose an online DPT-FSNet
and explore various compression methods along both the fre-
quency and time axes. Trainable compression and frame skip
prediction with a post-processing network yielded superior per-
formance compared to other methods along frequency and time
axes, respectively. Dual-path compression further improved the
performance by appropriately combining time and frequency
compression. In future work, we intend to address the ERLE
degradation caused by time compression and explore more ad-
vanced ways to minimize performance degradation.
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