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Abstract
Recent advancements in neural speech synthesis have renewed
interest in voice conversion (VC) to go beyond timbre trans-
fer. Achieving controllability of para-linguistic parameters like
pitch and speed is crucial in various applications. However, ex-
isting studies either lack interpretability or only provide global
control at the utterance level. This paper introduces ControlVC,
the first neural voice conversion system to enable time-varying
controls on pitch and speed. ControlVC uses pre-trained en-
coders to generate pitch and linguistic embeddings, combined
and converted to speech using a vocoder. Speed control is
achieved by TD-PSOLA pre-processing, while pitch control
is achieved by manipulating the pitch contour before feed-
ing it into the encoder. Systematic subjective and objective
evaluations show that this work significantly outperforms self-
constructed baselines on speech quality and controllability for
non-parallel zero-shot conversion while achieving time-varying
control 1.
Index Terms: Voice conversion, Controllability, Pitch and
Speed Control, Time-Varying Control

1. Introduction
Voice conversion (VC) is the task of alternating the timbre, style
and other para-linguistic features of a speech utterance while
maintaining its linguistic content [1]. It is gaining increasing at-
tention from researchers in various domains, thanks to its broad
applications in human-computer interaction, virtual human, and
multimedia production. Existing VC systems focus on the con-
version of timbre and style of the source speaker to those of a
target speaker [1, 2]. The controllability of other para-linguistic
features such as pitch and speed, however, has not received
much attention. In speech communication, para-linguistic fea-
tures are critical in conveying the emotion, intention and even
semantic meaning of the talker [3]. For example, raising the
pitch and slowing down help to emphasize a word [4]. There-
fore, achieving controllability on para-linguistic features such
as pitch and speed is a critical step toward making VC tech-
niques useful in many application scenarios.

In general, there are two levels of control on para-
linguistic features in VC. Global control refers to controls at the
utterance-level, and is often realized under the umbrella of style
transfer. For example, when an utterance is converted from a
male speaker to a female speaker, the overall pitch range is often
raised. Global control has been well achieved in many modern

1 This work is partially supported by New York State Center of Excel-
lence in Data Science award and synergistic activities funded by the Na-
tional Science Foundation (NSF) under grant DGE-1922591. A special
thanks to Yongyi Zang for developing the subjective evaluation website.
Code and audio samples: https://bit.ly/3PsrKLJ

VC systems [5, 6, 7] Local control refers to time-varying con-
trols of para-linguistic features. Little attention has been paid to
it by modern neural-based methods, and it is the concern of this
paper.

There are two major categories of VC systems: para-
metric methods and end-to-end methods. Parametric methods
first apply a statistical model or a neural network to estimate
speech parameters from the source and target utterances, and
then use these parameters to generate converted speech with
a vocoder [8, 9]. These methods generally can provide good
controllability by modifying the explicitly predicted parame-
ters, but limited performance on transferring the target timbre
due to insufficient capacity [10].

In recent years, end-to-end VC methods have shown signifi-
cantly better performance on timbre transfer and speech natural-
ness of the converted utterance [11, 7, 12, 13, 14]. However, the
controllability on para-linguistic features is sacrificed as they
are stored in network weights that are difficult to interpret. More
recent works try to disentangle different aspects of speech such
as content, timbre, pitch and speed into separate embeddings
to achieve controllability, however, such embeddings, and the
controls of them, are often at the global level [15, 16]. Even
with frame-level embeddings like those in [17], time-varying
control is still difficult to realize, since the embeddings do not
have an explicit mapping to human-interpretable parameters of
pitch and speed, and the influences of such embeddings on the
generation is not clear.

A natural thought is to design a cascade system to achieve
time-varying (local) control on pitch and speed in voice con-
version: First apply a neural-based method for timbre transfer,
and then apply signal processing methods such as time-domain
pitch synchronous overlap and add (TD-PSOLA) [18] to per-
form time-stretching and pitch shifting. We tried this, but ob-
served significant artifacts in the converted utterance. We ar-
gue that this is because the pitch and speed controls can be
hardly designed natural, and there is no following steps in the
VC pipeline to fix this unnaturalness. For example, when one
speeds up, consonants and vowels are sped up at different rates
depending on the context. Similarly, when one raises the pitch,
different phonemes are raised at different degrees.

In this paper, we propose ControlVC, a voice conversion
system that achieves time-varying control on pitch and speed.
ControlVC performs speed control by modifying the speed of
the source utterance using TD-PSOLA. It then performs pitch
control by modifying the pitch contour of the speed-controlled
source utterance, and uses a VQ-VAE pitch encoder to com-
pute discrete pitch embedding. A pre-trained HuBERT extracts
the linguistic embedding from the speed-controlled source ut-
terance, and a pre-trained speaker encoder extracts the speaker
embedding from the target utterance. A modified version of the
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Figure 1: System Overview.

HiFi-GAN vocoder [19] is then used to generate the waveform
of the converted utterance by integrating the pitch, linguistic
and speaker embeddings. It is noted that the pre-trained speaker
encoder enables the model to generalize to unseen speakers, and
the pre-trained linguistic encoder using vast datasets improves
the coverage of diverse linguistic content. They work together
to help the system to work in a zero-shot conversion scenario,
without the need of additional training data from the source or
target speaker.

To our best knowledge, ControlVC is the first neural VC
system that achieves time-varying controls on pitch and speed.
ControlVC performs a generic control on pitch and speed but
not trying to mimic those of the target speaker. It’s worth not-
ing that works such as [20, 21, 22] may have the potential to
achieve time-varying speed and/or pitch control, but substan-
tial modifications of the algorithms and necessary experiments
would be needed to support such claim, which is not the pri-
mary focus of their research. To validate the proposed system,
we conduct extensive subjective and objective evaluations and
compare it with two self-constructed baselines as no existing
systems were available. Experimental results show that Con-
trolVC realizes a good level of time-varying controllability on
pitch and speed, while achieving significantly better naturalness
and timbre similarity than the comparison methods.

2. Proposed ControlVC System
2.1. Overview

ControlVC aims to achieve time-varying control over pitch and
speed in non-parallel and zero-shot voice conversion using con-
trol curves. As shown in Figure 1, The system consists of
three stages: pre-processing, analysis and synthesis. The pre-
processing stage employs TD-PSOLA to modify the speed of
the source speech according to the speed control curve. In the
analysis stage, the pitch contour of the processed source ut-
terance is estimated and modified by the pitch control curve,
before being fed into a VQ-VAE to obtain a pitch embedding.
A linguistic embedding is computed from the speed-modified
source utterance through a linguistic embedding network. Fi-
nally, a speaker embedding is computed from the target utter-
ance. The pitch, linguistic and speaker embeddings are then
up-sampled, concatenated and fed to the synthesis stage, which
uses HiFi-GAN neural vocoder [19] to synthesize the time-
domain waveform of the converted speech utterance. Note that

only the HiFi-GAN vocoder is trained from scratch on the voice
conversion task, while the linguistic, speaker, and pitch en-
coders are pre-trained on other tasks and fixed.

2.2. TD-PSOLA Prepossessing and Speed Control

In the preprocessing stage, we use the time-domain pitch syn-
chronous overlap and add (TD-PSOLA) algorithm [18] to mod-
ify the speed of the source utterance according to the input
speed control curve. We first segment the original utterance and
apply time-stretching to each frame using the stretching ratio in-
dicated by the control curve at the corresponding location. The
pitch is retained, and so are the timbre and linguistic content.

2.3. Pitch Control and Pitch Embedding

We employ the YAAPT algorithm [23] to extract the pitch se-
quence (p1, · · · , pT ) of the speed-controlled source utterance
with a frame length of 20 ms and a hop size of 5 ms, where
T is the number of frames. This pitch sequence is then mul-
tiplied by the input pitch control curve to obtain the modified
pitch sequence (p′1, · · · , p′T ). The modified pitch sequence is
fed to a VQ-VAE based pitch embedding network [24] to ob-
tain the pitch embedding for the converted utterance. Taking
the pitch sequence as input, the encoder produces a sequence
of 128-d latent vectors (h1, · · · ,hT ), which are then mapped
to their respectively closet codes in a bottleneck codebook. We
then take the integer indices of the codebook vectors to form the
pitch embedding sequencez(p) = (z

(p)
1 , · · · , z(p)T ).

This VQ-VAE embedding network is trained on original ut-
terances in the training set without applying speed and pitch
controls, by minimizing the mean squared error (MSE) between
the estimated pitch sequence and the original pitch sequence.

2.4. Linguistic Embedding

To maintain the linguistic content of the source utterance, we
need a linguistic encoder to compute the linguistic embedding
from the (speed-controlled) source utterance. We use a publicly
available HuBERT model that is pre-trained on 960 hours of
LibriSpeech audio. In our system, the input to the linguistic en-
coder is the source waveform, segmented into the same frames
as those fed to the pitch detector. The outputs are 768-d fea-
ture vectors extracted from the 6-th layer, one vector for each
frame. As the feature vectors extracted from HuBERT are con-
tinuous and may contain speaker information, a K-means clus-
tering procedure is applied on the HuBERT output. We train
a mini-batch K-means clustering algorithm with scikit-learn on
the LibriSpeech-train-clean-100 dataset. During voice conver-
sion model training, new data is assigned to pre-stored clusters
based on the distance to the centroids. The final linguistic em-
bedding is the sequence of the integer cluster indices of each
frame z(l) = (z

(l)
1 , · · · , z(l)T ), where K is set to 100.

2.5. Speaker Embedding

In order to transfer the timbre information of the target speaker,
we use a speaker encoder to compute the speaker embedding
from the target utterance. Following the design of [25], our
speaker encoder has a stack of two LSTM layers with 768 cells.
It takes Mel-spectrogram as input and passes the outputs of the
last time step through a fully connected layer. This results in
a 256-d speaker embedding vector, which is then copied into a
embedding sequence z(s), to match the same frame rate as that
of the pitch and linguistic embeddings.
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2.6. HiFi-GAN Neural Vocoder

To construct the encoded discrete representation, the linguistic
and pitch embeddings are up-sampled, and the utterance-level
speaker embedding is copied to match the same frame rate.
These three embeddings are then concatenated into the inter-
mediate representation z = (z(p), z(l), z(s)), which is then fed
into a neural vocoder to generate the waveform. We use HiFi-
GAN’s [19] vocoder but modify the original implementation so
that it directly accepts the discrete and continuous mixed rep-
resentation z as input. The generator includes a set of trans-
posed convolution blocks to increase sample rate of the discrete
representation and a residual block with dilated layers to in-
crease the receptive filed. The discriminator contains two types
of sub-discriminators: five multi-period discriminators (MPD)
and three multi-scale discriminators (MSD).

We denote the generator as G and the discriminator as D,
which contains a total of K = 8 sub-discriminators as Dk, for
k ∈ 1, · · · ,K. The objectives for training the generator and the
discriminator are:

LG =
K∑

k=1

[
LAdv(G;Dk) + λfmLFM (G;Dk)

]
(1)

+ λmelLMel(G), (2)

LD =
K∑

k=1

LAdv(Dk;G), (3)

where LAdv , LFM and LMel are adversarial loss, feature
matching loss and mel-spectrogram loss, respectively. Follow-
ing [19], the tradeoff parameters λfm and λmel are set to 2
and 45, respectively. The feature matching loss LFM and mel-
spectrogram loss LMel are defined as:

LMel(G) = Ex,x̂

[
||ϕ(x)− ϕ(G(x))||1

]
, (4)

where x is the ground-truth audio. M denotes the number of
layers in the discriminator. Di and N i represent the features
and the number of features in the i-th layer, respectively. The
function ϕ transforms the waveform to a mel-spectrogram.

3. Experiments
3.1. Dataset

We evaluate ControlVC on the CSTR VCTK Corpus [26],
which includes 44 hours of clean speech uttered by 110 En-
glish speakers with various accents. All recordings are down-
sampled to 16 kHz. We randomly select 10 speakers (5 male
and 5 female) and use all of their utterances for testing, and the
remaining 100 speakers for training. In total, there are 39,781
utterances in the training set and 3,690 utterances in the test set.

3.2. Baseline Methods

To our best knowledge, ControlVC is the first VC method that
achieves time-varying control on pitch and speed, and no ex-
isting methods were found for direct comparison. As noted
earlier, while [20, 21, 22] may have the potential to achieve
time-varying control, substantial modifications of their methods
are needed. Therefore, we designed two baselines using well-
established algorithms in signal processing and VC to achieve
time-varying control. Note that both baselines are new control-
lable VC systems that do not exist in the literature.

The first baseline, named P-LPC, employs TD-PSOLA to
modify the pitch and speed of the source utterance, and linear
predictive coding (LPC) [27] to model the timbre of the target
speech and transfer it to the converted utterance. The second
baseline, named P-AutoVC, first uses TD-PSOLA to modify
the pitch and speed of the source, and then uses AutoVC [25]
to achieve timbre transfer. AutoVC is a widely-used neural-
based VC method that achieves high audio quality but no pitch
or speed controllability.

3.3. Training

For the proposed ControlVC method, the pitch encoder is pre-
trained on the VCTK dataset for 40k steps. The linguistic em-
bedding is extracted from the 6-th layer of a publicly available
pre-trained HuBERT model [28]. The speaker encoder is pre-
trained on a combination of VoxCeleb [29] and Librispeech [30]
datasets with a total of 3,549 speakers using GE2E loss [31].
Finally, we train the HiFi-GAN vocoder on the VCTK dataset
using one RTX 2080Ti with batch size 8 for 350k steps. We use
Adam optimizer with an initial learning rate of 0.0002 and a de-
cay rate of 0.999. For the PSOLA-AutoVC baseline, we use the
pre-trained AutoVC model available online [31].

3.4. Experimental Setup

The VC experiments are performed among all 90 pairs of 10
test speakers. Each utterance of one test speaker is converted
to each of the other 9 speakers’ voices. Each test speaker reads
a different set of sentences. All the 10 speakers and their sen-
tences are unseen during training. Therefore, the conversion is
non-parallel and zero-shot.

In this experiment, we apply control curves for speed and/or
pitch. Four control settings are tested: “No Control” - tra-
ditional voice conversion without any explicit control; “Pitch
Only” and “Speed Only” denote pitch or speed control but not
both; “Speed+Pitch” means both aspects are controlled. We test
two curves for pitch control: stressing (i.e., pitch rising abruptly
then going down gradually) and rising, and three curves for
speed control: parabola, speed up and slow down. The control
settings and the control curves are drawn with equal probability
for each conversion. We perform both subjective and objective
evaluations to assess the conversion quality, intelligibility and
controllability of the proposed system.

3.5. Objective Evaluation

We conduct an objective evaluation to assess the speech intel-
ligibility, timbre similarity and controllability of the converted
utterances. For speech intelligibility evaluation, we use IBM
speech recognition service [32] to transcribe converted speech
into text and then calculate the word error rate (WER) [33]
against the ground-truth transcripts. For timbre similarity, we
first use a pre-trained speaker encoder Resemblyzer [34] to ex-
tract speaker embeddings of the converted and the target utter-
ance. Then we score the speaker similarity (Sim.) by calculat-
ing the cosine distance between the embeddings on a scale of
0 to 1, the higher the more similar. The same set of samples
generated for subjective evaluation is used for this section.

Table 1 shows the objective evaluation results. It can be
seen that ControlVC outperforms both baselines by a large mar-
gin on both metrics across all test configurations, including no
control, pitch or speed only control and pitch+speed control,
showing its superior performance on audio quality and intelli-
gibility in various controllable conversion settings.
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Table 1: Objective evaluation results.

Sim. ↑ WER (%) ↓
GT 1.00 9.82

No Control
P-LPC 0.65 89.12

P-AutoVC 0.66 76.51
Proposed 0.85 10.99

Pitch Only
P-LPC 0.66 88.56

P-AutoVC 0.65 72.83
Proposed 0.82 12.40

Speed Only
P-LPC 0.65 88.64

P-AutoVC 0.65 72.59
Proposed 0.84 16.37

Pitch+Speed Proposed 0.83 22.46

3.6. Subjective Evaluation

We perform two subjective experiments using a self-designed
survey website which is publicly available and shared within
the University of Rochester and its alumni to recruit study par-
ticipants without providing monetary incentives.

Audio Quality Test. In the first test, we use mean opinion
score (MOS) [35] to assess the naturalness and timbre similarity
of the converted speech. Study participants are presented with
a set of utterances including one source, one target and several
converted utterances. Each set is referred to as a sample. The
converted utterances from ControlVC and the two baselines are
presented in random order. For each sample, participants are
asked to rate between 1-5 on the naturalness of the converted
utterances and the timbre similarity between the target and the
converted utterance. Higher scores are better. Each partici-
pant is asked to complete at least 6 samples, i.e., 36 ratings
for 18 converted utterances from 3 comparison methods. Par-
ticipants are allowed to complete more samples. In total, 233
samples are evaluated, resulting in 1398 ratings. As shown in
Fig. 2, ControlVC archives the best MOS among three com-
parison methods in all control settings. In addition, comparing
the three with-control settings with “No Control”, we see that
applying controls only slightly decreases the speech quality of
the converted speech from ControlVC.

Note that for unseen-to-unseen zero-shot voice conversion,
the original AutoVC paper [25] reports MOS scores on natural-
ness and similarity of about 3.1 and 2.9, and [22] reports MOS
on naturalness of 2.59 using AutoVC model. However, our P-
AutoVC baseline only achieves 2.17 and 2.68 MOS on natu-
ralness and similarity. In addition to consistent subject biases,
we suggest that there may be other reasons. First, in [22] Au-
toVC model is trained on VCTK (44 hours) and LibriTTS (360
hours), while in our work P-AutoVC is trained on VCTK only
to ensure a consistent training setup with the proposed system.
In addition, AutoVC is applied after the PSOLA preprocessing,
which introduces noticeable artifacts that are very likely to af-
fect the performance. Due to both reasons, we believe that the
performance degradation of P-AutoVC baseline is reasonable,
which also explains its subpar performance in Table 1.

Controllability Test. The second test assesses the control-
lability of the proposed ControlVC method. We do not include
the two baselines in this test due to their poor audio quality in
the previous test. The participants are presented with uncon-
trolled and controlled conversion results, along with a figure of
the corresponding control curve(s). The participants are then
asked to assess how accurately the curve describes the change
of pitch or speed between the uncontrolled and controlled con-

Figure 2: MOS results on audio quality (naturalness and timbre
similarity) with 95% confidence intervals.

Table 2: MOS results on controllability with 95% confidence
intervals.

Controllability Rating
Pitch Speed

Pitch
Only

Real Curve 3.38 ± 0.15 -
Fake Curve 3.00 ± 0.19 -

Speed
Only

Real Curve - 3.37 ± 0.25
Fake Curve - 3.21 ± 0.19

Pitch+Speed Real Curve 3.18 ± 0.15 3.41 ± 0.14

versions on a scale of 1 to 5, with 1 being “not at all accu-
rate”, 3 being“moderately accurate” and 5 being “very accu-
rate”. Each participant is asked to complete 6 rounds of tests,
with each round containing a pitch control, a speed control and
a pitch+speed control of the same source-target reference pair.
Participants are allowed to complete more rounds. In total, par-
ticipants completed 169 rounds of tests, resulting in 676 ratings.

In single-factor control conversions, the presented control
curve has a 15% chance of being a fake curve, which is a flipped
or circularly shifted version of the actual one used. This pro-
vides us baseline ratings of no controllability for comparison.
Table 2 shows the assessment results. A paired t-test shows that
our proposed method achieves a statistically significantly higher
MOS rating than the baseline does on pitch control (p < 0.01).
On speed control, the MOS difference is more subtle but still
statistically significant (p < 0.01). As some utterances are
short, it might be more difficult for the subjects to assess speed
controllability. The differences of MOS ratings between the
single-control (pitch-only or speed-only) and pitch+speed con-
trol is not statistically significant (p = 0.07 for pitch; p = 0.43
for speed). This suggests that our system is able to control both
factors simultaneously without significant quality degradation.

4. Conclusions
In this paper, we proposed a controllable voice conversion sys-
tem named ControlVC, which allows users to impose time-
varying controls on pitch and speed in voice conversion. The
converted utterance maintains the source utterance’s linguistic
content, mimics the target speaker’s timbre, and sounds natural
while following the user input pitch and/or speed controls. Both
subjective and objective evaluation results suggest that Con-
trolVC is able to perform pitch and speed control while pro-
ducing high-quality conversions.
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