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Abstract
Detection of Alzheimer’s Dementia (AD) is crucial for timely
intervention to slow down disease progression. Using sponta-
neous speech to detect AD is a non-invasive, efficient and inex-
pensive approach. Recent innovations in self-supervised learn-
ing (SSL) have led to remarkable advances in speech process-
ing. In this work, we investigate a set of SSL models using
joint fine-tuning strategy and compare their performance with
conventional classification model. Our work shows that fine-
tuning the pretrained SSL models, in conjunction with multi-
task learning and data augmentation, boosts the effectiveness of
general-purpose speech representations in AD detection. The
results surpass the baseline and are comparable to state-of-the-
art performance on the popular ADReSS dataset. We also com-
pare single- and multi-task training for AD classification, and
analyze different augmentation methods to show how to achieve
improved results.
Index Terms: Dementia detection, Self-supervised Learning,
Speech representation, Multi-task learning

1. Introduction
As the proportion of people with Alzheimer’s Disease increases
year by year, research into the early assessment of dementia has
become increasingly important. AD-related neurodegeneration
can cause cognitive changes that lead to progressive declines
in memory and language abilities [1]. Traditional methods of
AD detection are primarily based on clinical tests of cognitive
decline in daily activities. However, these diagnostics are lim-
ited by time and resource availability. Recently, numerous stud-
ies show that valuable cognitive clinical information can be ob-
tained from spontaneous speech [2, 3]. Some works use speech
analysis [4], natural language processing (NLP) [5, 6] and ma-
chine learning (ML) [7, 8] to distinguish healthy and cognitively
impaired participants in datasets that include speech tasks, such
as picture descriptions. These approaches show great potential
as a tool for rapid and non-invasive assessment of an individ-
ual’s cognitive state.

Feature extraction of speech and language is an important
first step in AD detection, which helps to distinguish whether
participants in the dataset are healthy or suffering from AD.
Generated speech features can be divided into two main groups,
text-based and acoustic-based features. Compared with text-
based methods, acoustic features are considered to be less dis-
criminative than linguistic ones [9]. As described in [10], most
of the top-ranked features are linguistic features such as parts
of speech (POS) and word categories, while acoustic features
rank relatively low for AD detection. According to previous
studies [5, 8], using manual transcripts of speech or a combina-
tion of transcripts and speech audio can generally lead to better

performance compared to using audio alone. But in practical
applications, text-based detection methods are limited by man-
ual transcription or rely heavily on the accuracy of automatic
speech recognition (ASR) systems. Exploring effective speech
representations from audio for AD classifier remains a challeng-
ing problem, and more robust and sensitive detection systems
need to be built. There are existing efforts on the acoustic char-
acteristics of AD detection. In [11], several acoustic feature
sets are assessed on the DementiaBank Pitt Corpus. The re-
sults show that combining the eGeMAPS feature set [12] with
hard fusion acquires the best accuracy of 78.70%. [13] uti-
lizes the bottleneck features extracted from audio using an ASR
model to achieve an accuracy of 82.59% on the Pitt dataset.
[8] uses low-level descriptors of IS10-Paralinguistics feature
set [14] and Bag-of-Acoustic-Words (BoAW) for feature aggre-
gation, and achieve an accuracy of 76.85 % on the ADReSS
challenge dataset. In [15], the authors use bag-of-deep-neural-
embeddings and ensemble learning approaches to detect de-
mentia, and obtain 83.33% accuracy with Music-Linear-BoW
features for audio modality on the same dataset.

Self-supervised learning (SSL) is a rapidly growing re-
search field that utilizes information extracted from the unla-
belled data to learn useful representations for downstream tasks.
There are two stages in this framework. In the first stage, SSL
is used to pretrain a representation model on a huge number of
unlabeled speech data, also called an upstream model. In the
second stage, downstream tasks use either the learned represen-
tation from the frozen model, or fine-tune the entire pretrained
model in a supervised phase. Recently, the framework has
shown great success in the speech processing community [16].
Numerous SSL models have been proposed [17, 18, 19, 20] for
different speech tasks.

In this paper, we propose a solution to solve the data
scarcity problem in AD detection by using the pretrained SSL
models and fine-tuning them on the dementia speech dataset,
combined with multi-task learning and data augmentation tech-
niques. Then we use temporal average pooling and a linear
layer on top of the feature extractor to carry out classification.
The evaluation shows that using the proposed method, we can
achieve better performance than the baseline and comparable to
currently published state-of-the-art (SOTA) results. The contri-
butions of this work are three-fold:

• We explore speech representations extracted from different
pretrained SSL models for AD detection using spontaneous
speech without manual or automatic transcripts.

• We combine multi-task learning and data augmentation with
the SSL models to obtain comparable results with SOTA.

• We evaluate the impact of audio augmentation on SSL mod-
els fine-tuning in terms of data size and kinds of methods.
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The remainder of the work is organized as follows: Sec-
tion 2 introduces the related work. Section 3 describes the SSL
frameworks, multi-task training and data augmentation meth-
ods. Section 4 reports the experiments and results. Finally, Sec-
tion 5 concludes the paper.

2. Related work
2.1. Self-supervised learning

Self-supervised learning has emerged as a new paradigm to
learn general data representations from unlabeled examples,
and then fine-tune models on labeled data. In natural language
processing (NLP), self-supervision has been used to leverage
huge amounts of unlabeled data to train a language model using
masked prediction [21]. Studies have shown that using self-
supervised pretraining can improve performance on a variety of
speech tasks [16, 22]. Self-supervised pretraining becomes an
effective method for neural networks to utilize unlabeled data,
which makes it possible to develop powerful models where la-
beled data is scarce. Many previous works [4, 23, 24] have
explored the potential of using SSL models in AD classifica-
tion task. In this work, we use wav2vec 2.0 [17], HuBERT [18]
and SSAST [25] frameworks as the backbone network to extract
feature representations from speech data.

2.2. Multi-task learning

Multi-task learning (MTL) as a regularization method can help
to solve the problem of overfitting in low-resource scenarios.
By learning an auxiliary task that is different from but related to
the main task, the model can be forced to improve generaliza-
tion performance. MTL has been successfully used in multiple
speech tasks, such as speech recognition [26], speaker verifica-
tion [27] and speech emotion recognition [28]. Previous works
[6, 29, 30, 31] suggest that pause (duration, frequency and dis-
tribution) and filler words (such as ‘uh’ or ‘um’) are speech
signs of dementia. In this work, we firstly implement single-
dataset MTL using gender recognition as the auxiliary task. We
also introduce an extra dataset and choose stuttering events de-
tection as the auxiliary task which have similar characteristics
with AD classification, such as speech disfluency. We hypoth-
esize that the models trained on the auxiliary task can benefit
from the additional gender or disfluency information as well as
regularization effect.

3. Methodology
In this work, we propose a method for AD detection using
speech representations extracted from the SSL models, com-
bined with multi-task training and data augmentation.

3.1. SSL frameworks

3.1.1. wav2vec 2.0

wav2vec 2.0 is a framework which masks latent representa-
tions of the raw waveform and solves a contrastive task over
quantized speech representations. A multilayer convolutional
neural network (CNN) is used to encode speech into a latent
space. The latent space representations are then quantized and
randomly masked before being passed to the multihead self-
attention layers of the transformer encoder. The InfoNCE loss
[32] is adopted to minimize the distance between contextualized
speech representations and quantized target vectors.

Figure 1: The training and inference processes of the proposed
method. The blue color represents the shared backbone. Yellow
(upper left part in training stage) and pink (upper in training
stage) are single-task and multi-task training, respectively.

3.1.2. HuBERT

HuBERT shares the same architecture as wav2vec 2.0. In
place of constructing a contrastive loss, HuBERT uses an offline
clustering step to generate pseudo-labels for masked language
model pretraining. The input speech is passed to the CNN en-
coder and randomly masked before passing to the transformer
network, which then predicts the pseudo-labels of the masked
regions. The target pseudo-labels are generated by perform-
ing two iterations of K-means clustering. The model evaluates
cross entropy loss between the correct K-means cluster and the
predicted one. The prediction loss is only applied to masked
regions, forcing the model to learn high-level representations of
unmasked inputs to infer the targets of masked ones correctly.

3.1.3. SSAST

SSAST is a self-supervised AST [33] model, which operates
over patches of spectrogram and adopts joint discriminative
and generative masked spectrogram patch modeling (MSPM).
The 2D audio spectrogram is split into a sequence of patches
and projected to a sequence of 1-D patch embeddings. Each
patch embedding is added with a learnable positional embed-
ding and then fed to the transformer encoder. During self-
supervised pretraining, a portion of spectrogram patches are
randomly masked. Two pretext tasks (finding the correct patch
at each masked position and reconstructing the masked patch)
are introduced to force the model to learn both the temporal and
frequency structure of audio data.

3.2. Fine-tuning SSL models

The pretrained SSL models can be regarded as feature encoders,
which yield contextualized speech representations for down-
stream tasks. We extract the last hidden states of the pretrained
models and use them as embedded representations of audio. A
temporal average pooling and one linear head followed by soft-
max are added as a simple down-stream classifier. The temporal
average pooling compresses variable time lengths into one, then
the linear head implements an utterance-level classification that
minimizes the cross-entropy loss (CEL). The training and infer-
ence processes are shown in Figure 1. In this work, we use joint
fine-tuning of the upstream model and the classification layer.
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Previous work [34] suggests that this is superior than fine-tuning
the classification layer with frozen weights of the SSL model,
since it can alleviate domain-shift between the pretrained and
fine-tuned datasets.

3.3. Multi-task training strategies

To implement MTL, an additional output layer of the same di-
mensionality is added to the classification head as shown in
Figure 1. This branch also takes the output of the same av-
erage pooling layer as the main branch as its input. We ex-
plore multi-task training in both single-dataset and multi-dataset
scenarios. For single-dataset learning (SD-MTL), inspired by
[35], we choose gender recognition as the auxiliary task which
has shown to be an effective way in disfluency detection. The
gender information of the ADReSS dataset can be obtained
from the metadata provided by the sponsor. A weighted cross-
entropy loss is computed for the auxiliary task, and the com-
bined loss is calculated as below:

LSD−MTL = λLmain + (1− λ)Laux (1)

where Lmain is the cross-entropy loss of the AD classification
task, Laux is the cross-entropy loss of auxiliary task, and λ is a
tunable task weight parameter. We experimentally set λ to 0.9.

For multi-dataset, multi-task learning (MD-MTL), we fol-
low [36] which introduces a multi-task learning scheme that
employs related tasks as well as related datasets in training pro-
cess. In this work, we use the SEP-28k dataset [37] which is a
corpus containing English stuttered speech. It consists of 28k
annotated clips (23 hours) extracted from podcasts that con-
tains five types of disfluencies: prolongations, blocks, sound
repetitions, word repetitions and interjections. In experiment,
we use a single network to train multiple tasks including stut-
tering events detection and AD classification, and extend it to
handle tasks from different datasets. As shown in Figure 2, we
mix batches with samples from the two datasets during training.
For each batch, it contains data randomly selected from the two
datasets for batch loss calculation, and each epoch consists of
data from the combined training set. Since common loss aver-
aging is not possible when batches are associated with different
datasets and tasks, we subsample each batch (size S) based on
its origin dataset and produce an effective batch per dataset (a
or b). Then, we calculate each task’s loss for the corresponding
samples. The averaged losses are computed over the size of the
effective batch and summed up as below:

LMD−MTL = (
∑

a∈S

Lmain/a) + (
∑

b∈S

Laux/b) (2)

In the case that no sample within a mixed batch has label as-
sociated with one of the tasks, we zero out the corresponding
dataset task’s loss. The gradients for each task-specific layer
are calculated based on the dataset task’s loss, and accumulated
before being backpropagated. Therefore, both tasks contribute
to train the shared backbone network, regardless of the number
of samples taken from each dataset. Because of the similarity
of the datasets, the mixed batches may contain complementary
information and prevent divergence in training.
3.4. Data augmentation

Data augmentation has been proved to be an effective way to
deal with data sparsity and can improve performance on many
speech tasks. Following [38], we select five types of audio aug-
mentation approaches and combine them to generate extended
training samples 1, including pitch shifting (Pitch), loudness

1https://github.com/hl-anna/DA4AD

Figure 2: Mixed-batch loss calculation. The loss from each task
is averaged over its dataset’s samples.

shifting (Loudness), Vocal Tract Length Perturbation (VTLP),
SpecAugment (SpecAug) and Voice Conversion (VC). Pitch
shifting is a change in pitch without changing the speed of
speech. We alter the pitch with a scale factor in the range of
(−15, 15). Loudness shifting increases or decreases the ampli-
tude of the signal. We adjust the loudness of each sample by
a scale factor in the range of (0.5, 5). VTLP performs warp-
ing along the frequency dimension on the Mel-spectrograms.
We apply VTLP operations with a scaling factor between (0.3,
3). SpecAugment combines time warping, frequency and time
masking on the log Mel-spectrograms. We also perform zero-
shot voice conversion using a pretrained VC model. Lastly, we
mix all augmented audios to create an extended training set. To
evaluate the data size effect of the proposed method, we gener-
ate different scales (5, 10, 15 and 20x) of the original dataset.

4. Experiments
4.1. Experimental Setup

We work with the ADReSS dataset [2] which is a subset of Pitt
dataset in Dementiabank. The dataset consists of speech sam-
ples from AD and non-AD English-speaking participants for the
Cookie Theft picture description task, and is divided into train
(108 participants, about 2 hours) and test (48 participants, about
1 hour) sets that balanced for age, gender and disease condition.

Since the ADReSS dataset is relatively small, we generate
an augmented training set to fine-tune the pretrained SSL mod-
els with the single-task and multi-task schemes as described in
3.2 and 3.3. We split the training samples into chunks of 10s
with a stride of 2s and apply data augmentation via the nlpaug
package 2. Both AD and non-AD in the ADReSS challenge’s
training set are used. For multi-task training, we split SEP-28k
corpus to train and validation sets as 80%, 20%. We perform
5-fold cross validation to evaluate the models, and report the
average accuracy and F1 score across 3 different seeds.
4.2. Comparison of single task training

We use Random Forest (RF) model trained with conventional
acoustic features as the baseline. The eGeMAPS feature set
[12] which contains 88 features is extracted from the augmented
audios using the openSMILE toolkit.

Prior to extracting feature embeddings from the SSL mod-
els, we fine-tune different systems with the augmented data in
single-task learning (STL) setting. For wav2vec 2.0 and Hu-
BERT, we follow [17, 18] to freeze the CNN-based feature en-
coder, only fine-tune the parameters of the transformer blocks.

2https://github.com/makcedward/nlpaug
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Table 1: Accuracy and F1 score results of single task training
on the augmented dataset.

Models Acc. F1

Baseline 0.678 0.691
wav2vec 2.0 0.737 0.728
HuBERT 0.742 0.736
SSAST 0.719 0.722

SOTA methods Acc. F1
Syed et al. [8] 0.768 -
Syed et al. [15] 0.833 -

Table 2: Accuracy and F1 score results of multi-task training on
the augmented dataset with respect to single-dataset (SD-MTL)
and multi-dataset (MD-MTL).

SD-MTL MD-MTL
Models Acc. F1 Acc. F1

wav2vec 2.0 0.752 0.738 0.766 0.786
HuBERT 0.759 0.746 0.783 0.779
SSAST 0.735 0.742 0.749 0.741

The wav2vec2-base and HuBERT-base upstream models are
employed, both models are pretrained on 960 hours of unlabeled
Librispeech dataset. We use the adam optimizer and fine-tune
the models for 10 epochs with a learning rate of 10−5, and batch
size 32. We choose the frame-based SSAST model for experi-
ment, which processes spectrogram in frame-by-frame manner
and is pretrained on AudioSet and Librispeech. We fine-tune it
up to 20 epochs, using a fixed learning rate of 10−4.

The result in Table 1 shows that the SSL model-based sys-
tems outperform the RF baseline model, which proves that by
leveraging powerful contextual speech representations we can
obtain significant improvement from pre-training over conven-
tional representations. It also shows that HuBERT is a better
feature extractor compared to wav2vec 2.0 in AD classification,
and the SSAST model achieve slightly lower result.

4.3. Comparison of multi-task training

For multi-task training, the SSL models are fine-tuned using the
combined MTL loss from equation (1) or (2) instead of a single
CEL term. The training parameters used for fine-tuning and the
feature extraction schemes are identical to the ones described
in section 4.2. we use batch size of 32 for both single-dataset
and multi-dataset MTL experiments for comparison. To fine-
tune on both the ADReSS set and SEP-28k corpus, we train the
models for up to 20 epochs, with a patience of 3 epochs.

Results are shown in Table 2. The HuBERT based model
gets the highest accuracy in both SD-MTL and MD-MTL,
which is better or comparable to state-of-the-art results [8, 15].
The wav2vec 2.0 model achieves the best F1 score in MD-MTL.
Comparing with STL, the results show that MTL significantly
improves models’ performance for AD classification task. For
different multi-task training strategies, it shows that MD-MTL
performs favorably over SD-MTL in all systems. We speculate
that this improvement is due to the fact that stuttering detection
is a task more related to AD classification and provides relevant
aspects in speech representations, and the mixed batch strategy
enable the network to acquire information across datasets.

Figure 3: The effect of data size for single-task learning (STL)
and multi-task learning (MTL). The default 1x scale is the orig-
inal training set of ADReSS corpus.

Table 3: Accuracy and F1 score results of training with different
data augmentation methods.

HuBERT SSAST
Data configuration Acc. F1 Acc. F1

ADReSS (no augment) 0.716 0.698 0.686 0.690
Pitch 0.725 0.711 0.703 0.706
Loudness 0.722 0.693 0.695 0.708
VTLP 0.719 0.718 0.687 0.692
SpecAug 0.731 0.715 0.713 0.697
VC 0.730 0.722 0.708 0.701

4.4. Effect of Data Augmentation

We investigate how data augmentation affects the performance
of SSL models fine-tuning in terms of data size and augmen-
tation method. We use two training settings (STL and MD-
MTL) to test the HuBERT and SSAST models on the extended
datasets of different scales. As shown in Figure 3, both models
trained with the MTL scheme acquire the best performance at
about 5x scale, more augmented data do not make more gain.
For single-task training, the model need much more data (about
15x) to obtain the best result and get relative lower accuracy.

To evaluate different data augmentation approaches, we
fine-tune the models with the STL scheme. Both models are
also trained only on the original ADReSS dataset for compar-
ision. The results in Table 3 show that all methods have posi-
tive effects on model’s performance. SpecAugment is the most
effective approach for SSL models fine-tuning. Voice conver-
sion preserving speech prosody and duration also has significant
benefits for model’s training. VTLP, pitch shifting and loudness
shifting make slightly improvements for AD classification task.

5. Conclusions
This work presents a comparative study of different embedding
features abstracted from the pretrained SSL frameworks for AD
detection. Experimental results on the ADReSS dataset reflect
that combined with multi-task learning and audio data augmen-
tation, the proposed method is able to detect AD with high accu-
racy that is comparable to the state-of-the-art results. In future
work, we plan to improve the feasibility of pretrained embed-
ding features for different kinds of dementia stages and extend
our work to multi-class scenario.
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