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Abstract
The previous SpEx+ has yielded outstanding performance in
speaker extraction and attracted much attention. However, it
still encounters inadequate utilization of multi-scale informa-
tion and speaker embedding. To this end, this paper proposes a
new effective speaker extraction system with multi-scale inter-
fusion and conditional speaker modulation (ConSM), which is
called MC-SpEx. First of all, we design the weight-share multi-
scale fusers (ScaleFusers) for efficiently leveraging multi-scale
information as well as ensuring consistency of the model’s fea-
ture space. Then, to consider different scale information while
generating masks, the multi-scale interactive mask generator
(ScaleInterMG) is presented. Moreover, we introduce ConSM
module to fully exploit speaker embedding in the speech extrac-
tor. Experimental results on the Libri2Mix dataset demonstrate
the effectiveness of our improvements and the state-of-the-art
performance of our proposed MC-SpEx.
Index Terms: speaker extraction, multi-scale interfusion, con-
ditional speaker modulation

1. Introduction
Speech separation, commonly known as the cocktail-party
problem, is a fundamental challenge in the field of speech pro-
cessing that intends to separate each source signal from the
mixed speech of multiple speakers. Most studies on speech
separation are limited by the requirement for prior knowledge
of the number of speakers, and additionally they entail address-
ing the global permutation ambiguity challenge [1] to channel
the correct speaker to the correct output voice stream. In order
to avoid these constraints, speaker extraction is proposed as a
strategy that only extracts target speaker’s speech from the mix-
ture according to the reference speech from target speaker. It
can be used in a variety of downstream applications, including
automatic speech recognition (ASR), real-time communication
(RTC) and speaker diarization, just to name a few.

Motivated by humans’ top-down auditory attention to the
target speaker [2, 3], deep learning-based speaker extraction
methods [4–12] primarily adopt a two-subnet architecture con-
sisting of a speaker encoder and a speech extractor, in which
the speaker encoder models the speaker representation of the
target speaker, and then directs the speech extractor to extract
the speech signal belonging to the target speaker. While fol-
lowing the previous practice, SpEx+ [13] further introduces a
twin speech encoder with shared parameters to capture multi-
scale speech features directly from the speech waveform for
the speaker encoder and speech extractor, and reverts their pro-
cessed multi-scale features to the waveform via the speech de-
coder. By doing so, a uniform latent feature space containing
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multi-scale information is introduced for both the subnets of
speaker encoder and the speech extractor, resulting in outstand-
ing results for SpEx+.

Despite the impressive performance, SpEx+ is still not per-
fect. The remarkable achievements of Conformer in source sep-
aration [14, 15] and speaker verification [16] demonstrate that
the effective fusion of multi-scale speech information enables
neural networks to leverage more comprehensive acoustic fea-
tures, which is conducive to the model performance. Never-
theless, in SpEx+, the fusion of the multi-scale information ex-
tracted by speech encoder could be further boosted. And, while
the twin speech encoder of SpEx+ considers the consistency of
the two subnets’ feature space [13], the original independent fu-
sion modules within each subnet do not take this into account
so far. Besides, when decoding the mask, SpEx+ merely em-
ploys three separate branches to generate three masks for dif-
ferent scales, which fails to adequately combine and utilize in-
formation in multiple scales. Furthermore, it has been pointed
out that the speaker embedding, which is concatenated with the
frame-level speech features, cannot be sufficiently exploited by
the stacked temporal convolutional network (TCN) blocks [17].
We argue that this underutilization of speaker embedding arisen
in SpEx+ may compromise the model’s discrimination for tar-
get speaker in mixed speech, consequently leading to a limited
capability of the speaker extraction system.

In this paper, to tackle the insufficient utilization of multi-
scale information as well as speaker embedding in SpEx+, we
propose an efficient speaker extraction system called MC-SpEx.
We design the ScaleFuser to more effectively leverage multi-
scale information extracted from the speech waveform. After-
wards, for the consistency of two subnets’ feature space, we
incorporate the newly designed ScaleFusers with shared pa-
rameters into the twin speech encoders to obtain twin multi-
scale fusion speech encoders. Correspondingly, the ScaleIn-
terMG is also presented to substitute the original three inde-
pendent branches, so as to take the different scale information
into account when generating masks. Together with the original
speech decoder, the ScaleInterMG constitutes the multi-scale
interactive speech decoder. Furthermore, we introduce ConSM
module to fully blend speaker embedding into the speech ex-
tractor. Experimental results show that MC-SpEx significantly
outperforms the performance of our baseline SpEx+ in extract-
ing the speech signals of the target speaker, which confirms the
effectiveness of our improvements. Moreover, our proposed
MC-SpEx also yields state-of-the-art results for the speaker ex-
traction task on the Libri2Mix dataset [18].

2. Methodology
As shown in Figure 1, MC-SpEx is composed of four main
parts: multi-scale fusion speech encoders, speaker encoder,
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Figure 1: The overall diagram of the MC-SpEx. The dotted
border represents the module with shared weights. The “⊗”
means element-wise multiplication. The “SI-SDR Loss” and
“CE Loss” refer to the scale-invariant signal-to-distortion ratio
loss and cross-entropy loss in multi-task learning [1].

speech extractor, and multi-scale interaction speech decoder.
One of the subnets, the speaker encoder, uses a residual network
(ResNet) encoder [19] comprising of stacked ResNet blocks and
a pooling layer. As the other subnet, the speech extractor con-
sists of M groups of speaker-guided stacked TCN blocks. In-
side each group, there are the ConSM module in the front end
and N stacked TCNs with exponentially growing dilation fac-
tors {2n}(n ∈ {0, · · · , N − 1}).

The proposed model takes the mixed speech waveform s
and reference speech waveform r as inputs. In the weight-
share multi-scale fusion speech encoders, the encoder respec-
tively extracts multi-scale speech features Smul = [Ss,Sm,Sl]
and Rmul = [Rs,Rm,Rl] from waveforms s and r, where
“[, ]” denotes the concatenation operation and the subscripts s,
m and l refer to small, middle, and large scales respectively
as in [13]. And then, the ScaleFusers are responsible for fusing
the multi-scale information, in which Smul and Rmul are fused
into S and R, respectively. R is fed to speaker encoder and
then we get the speaker embedding Er from it to represent the
characteristics of the target speaker. The speech extractor, un-
der the direction of Er , outputs processed speech features S̃out

based on another input S. Eventually, in multi-scale interac-
tion speech decoder, the ScaleInterMG interactively generates
multi-scale receptive masks Ms, Mm and Ml from S̃out. Af-
ter the element-wise multiplication between multi-scale masks
and the corresponding multi-scale features in Smul, we obtain
the speech features Ŝs, Ŝm and Ŝl predicted by the model, and
these features are transformed by decoder to gain the estimated
speech waveform ŝs, ŝm and ŝl. These predicted speech wave-
forms and Er are eventually used to calculate the multi-task
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Figure 2: (a) The details of the ConSM, where “⊗” indicates
the element-wise product. (b) The details of the ScaleFuser. (c)
The details of the ScaleInterMG.

learning loss for training the model as described in [1]. We will
elaborate on our improvements in the following subsections.

2.1. Multi-Scale Fuser

The notable successes of Conformer in source separation [14,
15] and speaker verification [16] evince that the effective fu-
sion of temporal information of speech on multiple time scales
[20, 21] enables neural networks to exploit richer acoustic fea-
tures, which is conducive to the performance of the model.
However, the fusion of the multi-scale information in SpEx+
is quite rough. It simply concatenates Sl,Sm and Ss in the fea-
ture dimension, and fuses them using a 1-D convolution with
kernel size of 1. This approach fails to consider the local in-
formation of the feature dimension as well as the information
in neighboring frames, and is not enough to sufficiently fuse
multi-scale features.

As a consequence, we propose the more efficient multi-
scale feature fusion module ScaleFuser as an alternative to the
original coarse method. The structure of ScaleFuser is shown
in Figure 2(b), which consists of Nf stacked Conv2d blocks,
each of them contains 2-D convolution, an activation function
ELU [22]. The module takes the multi-scale features Xs, Xm

and Xl as input, where X stands for S or R. We consider Xs,
Xm and Xl as different channels, and then interactively fuse
the features of different channels through the 2-D convolution
kernels in Conv2d blocks. Eventually the feature X that ade-
quately combines information from different scales is obtained:

X = F([Xs,Xm,Xl]). (1)

where F(·) represents the mapping function defined by the
ScaleFuser. Compared with the fusion in SpEx+, ScaleFuser
takes the information of local feature dimensions and adjacent
frames into account through 2-D convolution, which enables
a more effective fusion of multi-scale features. Additionally,
for the consistency of two subnets’ feature space, we share the
parameters of ScaleFusers in the multi-scale fusion speech en-
coders.

2.2. Conditional Speaker Modulation Module

It has been pointed out that the speaker embedding, which is
concatenated with the frame-level speech features, cannot be
sufficiently exploited by the stacked TCN blocks in the SpEx+
[17]. Meanwhile, in text-to-speech (TTS) works [23, 24], a
small condition network called conditional layer normalization
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is implemented to modulate the hidden representations for syn-
thesizing the target speaker’s speech. Inspired by this and ac-
counting for the differences between TTS and speaker extrac-
tion tasks, we present the ConSM for addressing the above
speaker embedding under-utilization problem based on condi-
tional layer normalization.

Specifically, the conditional layer normalization [24] adopts
speaker-conditional affine transformation to modulate the hid-
den features that are performed layer normalization [25] at first.
In contrast to TTS, in speaker extraction, the speech features
extracted from the mixture contain the target speaker’s speech
information, in which case we believe that applying layer nor-
malization first may result in the loss of such information. Ac-
cording to this, we tune the locations of layer normalization and
speaker-conditional affine transformation, and apply it to the
speaker extraction task, which is what we call ConSM. As in
Figure 2(a), the ConSM takes speaker embedding Er and the
frame-level speech feature S(t) in speech extractor as the in-
puts, where t = 1, ..., T denotes the frame indices. We feed Er

to a linear layer with mapping function D(·) and another lin-
ear layer with mapping function R(·) to gain the adaptive scale
vector α and bias vector β respectively:

α = D(Er), β = R(Er). (2)

We perform an affine transformation of S(t) with α and β, then
conduct a layer normalization on the result of it:

S̃(t) = Norm(α⊗ S(t) + β). (3)

where Norm is the layer normalization and ⊗ represents the
element-wise product. Through this, depending on the condi-
tion of the given speaker embedding, we are able to scale up
or down the speech features, negate them, and selectively set
thresholds on them. Consequently, we can reinforce the infor-
mation in the speech features that are relevant for extracting
the target speaker in the ConSM module, instead of relying on
the subsequent stacked TCNs to handle this, which resolves the
speaker embedding under-utilization issue of the stacked TCNs
in SpEx+. The conditional affine transformation in ConSM may
be relatively similar to FiLM [26–28], but as described above,
the problem it seeks to solve is different from FiLM. Further-
more, compared to FiLM, ConSM has an extra layer normaliza-
tion operation after the affine transformation, which we argue is
more appropriate for the speaker extraction task.

2.3. Multi-Scale Interactive Mask Generator

Previous works [1, 13, 17] all apply three independent branches
to generate three scales of receptive masks. This leads to the
issue that, when generating the mask of corresponding scale,
each branch solely utilizes the information of one scale. To
this end, we introduce ScaleInterMG. Through the interaction
of different scales, it allows the model to make reasonable use of
the valid information of other scales when generating the mask
at a certain scale.

As shown in the Figure 2(c), the ScaleInterMG is composed
of Ng stacked Conv2d blocks, with each block containing a 2-D
convolution, an ELU [22] and a layer normalization. The mod-
ule takes S̃out as input, and then interactively fuses the features
of different channels through the 2-D convolution kernel in the
Conv2d block, ultimately treating the obtained features of three
channels as multi-scale masks Ms, Mm and Ml:

Ms,Mm,Ml = H(S̃out). (4)

where H(·) is the mapping function that is intended to describe
the ScaleInterMG. By means of the above, ScaleInterMG can
generate the mask at a certain scale with valid information from
multiple scales, while reducing the number of parameters re-
quired by SpEx+ that employed three branches.

3. Experiments
3.1. Datasets

We conduct our experiments on the popular Libri2Mix dataset
[18]. The train-100 subset, which is used for training, contains a
total of 58 hours of utterances from 291 speakers. The dev sub-
set and test subset consist of 40 unseen speakers respectively,
with an overall audio duration of 11 hours in each subset. The
dev subset is served as the validation set during model training,
while the test subset is for the evaluation of the model’s final
performance. For all speech audio, the sampling rate is 8 kHz.
Moreover, all of mixtures are in the ‘minimum’ mode.

3.2. Training Setup and Baselines

We employ Adam optimizer with an initial learning rate of 1e-
3. The learning rate decays by 0.5 once the performance on
the validation set is not improved in 3 consecutive epochs. The
training of the model will be stopped when the best model is
not found in the validation set after 8 consecutive epochs. Dur-
ing the training procedure, both the mixed speech and the refer-
ence speech of target speaker are sliced into 3-second segments,
while the full-length audio is applied at inference.

To testify the effectiveness of our improvement, the follow-
ing models were compared. Aiming at a fair comparison, the
identical experimental setup is implemented for each model.
(1) SpEx+: Following [13], the convolutional filtering lengths
of the speech encoder and decoder in SpEx+ are {2.5, 10, 20}
ms respectively. The number of ResNet blocks [19] in ResNet
speaker encoder is set to 3, and the dimension of speaker em-
bedding is 256. The hyperparameters are M = 4 and N = 8
for speaker-guided stacked TCNs in speech extractor. The
SpEx+ has a total of 11.78 M parameters. (2) MC-SpEx: There
are 4 Conv2d blocks in ScaleFuser with 2-D convolution chan-
nels of {3, 32, 32, 1} and kernal sizes of {3, 3, 3, 3}. The
ScaleInterMG contains 4 Conv2d blocks having kernal sizes of
{3, 3, 3, 3}, and their 2-D convolution channels are {1, 32, 32,
3}. The other configurations are the same as described above.
The number of parameters for MC-SpEx is 10.77 M.

In our experiments, we mainly evaluate the model perfor-
mance through three objective metrics, SI-SDR, PESQ, and ES-
TOI. Among them, SI-SDR is measured from the signal per-
spective, while PESQ and ESTOI are considered from the per-
ceptual quality perspective, and the higher values of them are
all positively correlated with better outcomes.

Table 1: The performance in terms of SI-SDR [dB], PESQ
[MOS] and ESTOI [%] on the Libri2Mix test set.

Methods SI-SDR PESQ ESTOI
Mixture 0.001 1.603 53.8

TD-SpeakerBeam [9] 12.86 2.750 -
sDPCCN [29] 11.65 2.738 78.9

TD-SpeakerBeam + PL2+ PFlin [30] 13.88 2.860 -
SpEx+ [13] 13.41 2.936 82.4
MC-SpEx 14.61 3.195 84.9
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Table 2: Performance of SI-SDR and PESQ in section 3.4.1 us-
ing the Libri2Mix test set. “SF” and “SIMG” mean ScaleFuser
and ScaleInterMG respectively.

Ablation
Modules ID Settings SI-SDR PESQ

#1 SpEx+ 13.41 2.936
Weight-share
ScaleFusers #2

#1 + weight-
share SFs 14.05 3.075

ScaleInterMG #3 #1 + SIMG 13.72 3.059
#4 #2 + SIMG 14.32 3.153

ConSM
module

#5 #1 + ConSM 13.69 2.969
#6 #4 + ConSM 14.61 3.195

Table 3: Performance of SI-SDR and PESQ in the investiga-
tion of weight-share ScaleFusers with the Libri2Mix test set.
The “EncExt” and “EncSpk” respectively denote the multi-
scale fusion speech encoder in the subnet of speech extractor
and speaker encoder.

Methods SI-SDR PESQ
SpEx+ 13.41 2.936
+ ScaleFuser in EncExt 13.55 2.955
+ ScaleFuser in EncSpk 13.70 3.031
+ shared weights 14.05 3.075

3.3. Comparison with Baseline and State-of-the-art Meth-
ods

Table 1 shows the performance of different speaker extraction
methods on the Libri2Mix test dataset. In the last two rows
of the Table, the performances of SpEx+ and the proposed MC-
SpEx are compared, and the results show that MC-SpEx outper-
forms the SpEx+ in all evaluation metrics. This indicates that
our improvements have indeed improved the model’s ability to
extract the speech of target speakers.

We further compare the proposed MC-SpEx to some other
top-ranked methods [9,29,30] on the Libri2Mix dataset in Table
1. Among them, the sDPCCN is a frequency-domain method
with powerful capability [29]. While the TD-SpeakerBeam +
PL2 + PFlin has resolved the target confusion using the strate-
gies of prototypical loss (PL) and post-filtering (PF) [30], which
is the previous best speech extraction system on the Libri2Mix
dataset. It can be concluded that comparing with these latest
methods, MC-SpEx achieves the state-of-the-art results on the
Libri2Mix dataset.

3.4. Ablation Studies

In this section, taking SpEx+ as backbone, we perform a series
of ablation studies about our improvements.

3.4.1. Overall Analysis on Proposed Modules

To start with, we analyze the contribution of our proposed mod-
ules to the model and the compatibility among them. From Ta-
ble 2, we can observe that appending weight-share ScaleFusers,
ScaleInterMG and ConSM individually to SpEx+ shows cer-
tain effectiveness (#2, #3 and #5). It follows that the inter-
fusion of multi-scale information in ScaleFuser and ScaleIn-
terMG, as well as using the ConSM to modulate, are beneficial
to the model’s performance. Furthermore, all of the weight-
share ScaleFusers, ScaleInterMG and ConSM do not conflict
with each other (#2, #4 and #6) and the combination of the three,
the MC-SpEx, achieves the best results (#6).

Table 4: The performance in terms of SI-SDR and PESQ in
the investigation of ConSM module using the Libri2Mix test set.
The “Conditional LN” refers to the conditional layer normal-
ization.

Methods SI-SDR PESQ
SpEx+ 13.41 2.936
SpEx+ with Conditional LN [24] 13.42 2.935
SpEx+ with FiLM [27] 13.55 2.955
SpEx+ with ConSM module 13.69 2.969

3.4.2. Investigation of Weight-share ScaleFusers

We then further explore the role of the weight-share Scale-
Fusers. As can be seen from Table 3, the performance of the
model has been improved after the additions of ScaleFuser to
the multi-scale fusion speech encoder in the subnet of speech
extractor and speaker encoder. This illustrates that our proposed
ScaleFuser indeed enables more effective fusion of multi-scale
features than the original method in SpEx+. Moreover, after
sharing the weights of the ScaleFusers, the model performance
is further boosted, which confirms effectiveness of our strategy
to ensure the consistency of two subnets’ feature space in the
multi-scale feature fusion stage.

3.4.3. Investigation of ConSM Module

In order to investigate the effects of the ConSM module, in table
4, we compare it with the approaches mentioned in section 2.2.
One can see that, after applying a dedicated module to exploit
speaker embedding, the usage of either the FiLM or ConSM
module brings a performance gain respectively, which indicates
that this strategy does improve the SpEx+ with insufficient uti-
lization of speaker embedding. However, the addition of condi-
tional layer normalization leads to almost no change in perfor-
mance. This is probably because that, as analyzed in subsection
2.2, the normalization on the speech feature first operated in
the conditional layer normalization introduces an information
loss, which renders it inappropriate for the speaker extraction
task. In addition, the SpEx+ with ConSM module exceeds the
SpEx+ with FiLM in terms of both the signal (SI-SDR) and per-
ceptual quality (PESQ). This also demonstrates that, compared
to FiLM, our proposed ConSM is more suitable for speaker ex-
traction.

4. Conclusions
In this paper, we propose a framework with multi-scale inter-
fusion and conditional speaker modulation named MC-SpEx.
It adopts the weight-sharing ScaleFusers to effectively exploit
the multi-scale information and ensure the consistency of the
two subnets’ feature space. And then, the ScaleInterMG is pre-
sented to take the different scale information into account while
generating masks. Furthermore, we introduce ConSM module
to fully blend the speaker embedding in the speech extractor.
Experimental results1 on the Libri2Mix dataset show that MC-
SpEx achieves a impressive performance and achieves state-of-
the-art results for the speaker extraction task, which demon-
strate the effectiveness of our improvements.
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