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Abstract
Recent studies in deep learning based acoustic echo cancella-
tion proves the benefits of introducing a linear echo cancella-
tion module. However, the convergence problem and potential
target speech distortion impose an additional learning burden
for the neural network. In this paper, we propose a two-stage
progressive neural network consisting of a coarse-stage and a
fine-stage module. For the coarse-stage, a light-weighted net-
work module is designed to suppress partial echo and potential
noise, where a voice activity detection path is used to enhance
the learned features. For the fine-stage, a larger network is em-
ployed to deal with the more complex echo path and restore
the near-end speech. We have conducted extensive experiments
to verify the proposed method, and the results show that the
proposed two-stage method provides a superior performance to
other state-of-the-art methods.
Index Terms: acoustic echo cancellation, deep learning, two-
stage, coarse-stage, fine-stage

1. Introduction
In a hand-free communication system, the acoustic echo is a
troublesome distraction and annoying. The echo occurs when
a far-end signal gets played out from the loudspeaker and then
recorded by the near-end microphone. Acoustic echo cancella-
tion (AEC) aims to suppress the undesired echo picked up by
the microphone. There are a wide range of real-world applica-
tions where it is extremely desired to remove the echo, such as
real time communication [1, 2, 3], smart classroom [4], hand-
free system in car [5, 6], and so on.

Considering the importance of the AEC task, numerous
studies have been made to address it since the 1990s. Tradi-
tional methods [7, 8] try to estimate the echo path with a linear
AEC (LAEC) by employing adaptive filter algorithms and then
reconstruct the echo to be subtracted from the microphone sig-
nal. Varieties of nonlinear processors (NLP) [9, 10, 11] based
on digital signal processing are also designed to remove residual
echo. However, the results were still far from satisfactory.

More recently, the data-driven AEC models with deep
learning (DL) methods have proven to be more powerful [12,
13, 14, 15]. Those methods formulate the AEC as a supervised
learning problem in which the mapping function between input
signals and the near-end target signal is learned with a deep neu-
ral network (DNN). However, the real echo path is extremely
complex, which imposes high requirement on the modeling ca-
pacity of the DNN. To reduce the modeling burden of the net-
work, most existing DL-based AEC approaches [16, 17, 18] em-
ploy a LAEC module based on the adaptive filter algorithms to
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suppress a large proportion of the linear component of echo.
However, there are two disadvantages with the LAEC module:
1) an inappropriate LAEC may cause some near-end speech dis-
tortion, and 2) the convergence process makes the performance
of the LAEC unstable. Since the LAEC is self-optimizing, the
shortcomings of the LAEC would lead to an additional learning
burden for the subsequent network.

To better integrate a LAEC module into the DL framework,
several differentiable digital signal processing (DDSP) methods
[19, 20, 21] have been attempted. Authors in [20] represent the
LAEC as a differentiable layer within a DL framework, where a
DNN is employed to estimate the step size parameters and refer-
ence signal for the LAEC. However, the update process of adap-
tive filter coefficients still exists in the aforementioned methods,
which makes the convergence problem still not effectively re-
solved. There are also several end-to-end multi-stage DL based
methods without using the LAEC module [22, 23, 24]. Authors
in [25] proposed a cascade architecture for joint phase and mag-
nitude enhancement. A two-stage structure (DAEC-64+NRES-
64) [26] decoupling the tasks of echo cancellation and noise
suppression is designed, which consists of a deep AEC module
and a noise and residual echo suppression module. However, it
still remains challenging to balance the echo removal and near-
end speech preservation.

To avoid the influence of the LAEC and preserve a better
near-end speech quality, this paper explores a novel end-to-end
DL based two-stage progressive processing pattern, where the
network’s capability of modeling complex situations gradually
increases. We wish to design a neural network based prepro-
cessing module, which has a similar function as the LAEC that
helps to reduce the learning burden of the subsequent model and
can be jointly optimized. To this end, a two-stage progressive
neural network (TSPNN) consisting of a coarse stage and a fine
stage is proposed. At the coarse stage, a light-weighted prelim-
inary AEC module (P-AEC) is first designed to preliminarily
suppress partial echo and noise. More importantly, a multi-task
learning based near-end voice activity detection (VAD) task is
considered, where a VAD penalty loss function is employed to
enforce the network to be aware of the near-end speech. After
the coarse stage, the signal to echo ratio increases accordingly.
However, some residual echo and noise still exist due to the
incapability of modeling complex echo scenarios using a light-
weighted network structure. At the fine stage, a larger refine-
ment AEC module (R-AEC) is then applied to remove residual
echo and noise. Meanwhile, to deal with a potential speech
distortion caused by the light-weighted model used in coarse
stage, several neighboring time-frequency bins are considered
when reconstructing the near-end signal. The coarse stage and
fine stage are jointly optimized to avoid the sub-optimization
caused by optimizing each stage independently.
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Figure 1: (A) The flowchart of the proposed two-stage progressive neural network, which consists of a time delay compensation (TDC)
block, a coarse-stage module and a fine-stage module. (B) The design of GatedTrConv2D block.

2. Problem Formulation
In a full-duplex communication system, the microphone signal
y(t) can be formulated as

y(t) = s(t) + n(t) + hr(t) ∗ Γ (x(t)) (1)

where s(t) is the near-end target signal, n(t) is the interference
noise, x(t) is the far-end reference signal, hr(t) is the room
impulse response (RIR) representing the echo path, and Γ (∗)
denotes potential non-linear distortion, e.g., loudspeaker distor-
tion and other processing distortion. In general, the AEC task
is to remove the echo component hr(t) ∗ Γ (x(t)) from y(t).
In this paper, we consider a more challenging situation, where
the interference noise n(t) should also be suppressed simulta-
neously.

3. Proposed Method
3.1. Overview

In real communication environments, complex echo scenarios,
e.g. extremely low signal-to-echo ratio and heavy reverbera-
tion, place extra burden on a single stage model. In this paper,
we introduce a two-stage progressive neural network (TSPNN)
to perform echo cancellation using an initial coarse processing
followed by a final finer level of processing. The two-stage net-
work parameters are jointly optimized to avoid a sub-optimal
solution caused by the self-optimization for each stage.

As depicted in Fig. 1 (A), the proposed method consists of
a GCC-PHAT [27] based time delay compensator (TDC) for
aligning the reference signal and microphone signal, and a neu-
ral network based echo canceller: the TSPNN for recovering
the near-end clean speech progressively. The TSPNN contains
two processing stages: a coarse-stage and a fine-stage. At the
coarse-stage, a light-weighted model is first employed to detect
the near-end speech and reduce the partial echo and noise. At
the fine-stage, a larger model is then designed to suppress the
residual echo and noise, and restore the near-end speech.

3.2. Input features

Given a far-end reference signal x(t) ∈ R1×S and a micro-
phone signal y(t) ∈ R1×S , the TDC is first applied to predict
the aligned reference signal x′(t) = x(t−∆), which has been
proved to be helpful for the convergence of the AEC model.
A short-time Fourier transform (STFT) module is then used to
convert x′(t), y(t) into time-frequency domain representations
X,Y ∈ CF×T respectively, where F, T denote the number of
frequency and time bins respectively. To improve the detection
of the low energy near-end signal, a compressing strategy on

the raw spectrogram is utilized and the stacked compressed in-
put features Icprs ∈ R2×F×T are defined as follows.

Xcprs = |X|α ∈ RF×T , Ycprs = |Y |α ∈ RF×T (2)

Icprs = stack([Xcprs, Ycprs]) (3)

where Xcprs, Ycprs denote the compressed magnitudes of the
far-end reference signal and microphone signal with the com-
pression factor α ∈ (0, 1), respectively.

3.3. Network structure

3.3.1. Coarse-stage

We employ a light-weighted neural network based preliminary
AEC module (P-AEC) at the coarse-stage to remove the par-
tial echo and noise. To enhance the hidden features of near-end
clean speech, we employ multi-task learning considering the
voice detection and near-end signal reconstruction task simul-
taneously. The backbone of P-AEC is based on the convolution
recurrent network (CRN) [28, 29], which is capable of captur-
ing the local spectral pattern and long-term dependence. Since
only a coarse processing is required, a light-weighted CRN is
used to reduce the computational cost.

The proposed P-AEC contains five modules: an encoder, a
dual-path GRU, a decoder, a mask predictor and a VAD path.
The encoder module consists of a series of stacked Conv2D
blocks, which captures local spectral features and compresses
the frequency dimension to expand the receptive field. Each
Conv2D block is a Conv2D layer cascaded with a batch nor-
malization (BN) layer and the parameter rectified linear unit
(PReLU) for the activation function. To better model global
features over the frequency and time, the dual-path GRU mod-
ule is applied, which consists of two F-T-GRU layers [30]. Each
F-T-GRU layer contains a bi-directional GRU for capturing the
harmonic dependence along the frequency dimension and a uni-
directional GRU for modeling the long-term dependence along
the time dimension. Based on the features extracted by the
dual-path GRU module, a decoder module is used to recover
the frequency dimension and synthesize the target speech fea-
tures. The decoder module is symmetrical with the encoder,
where the Conv2D layer is replaced with the TransposeConv2D
layer. To further filter the features, a gate mechanism is in-
troduced in the decoder module (GatedTrConv2D) taking into
account the output of the encoder, which is shown in Fig. 1 (B).
After the decoder module, the mask prediction module directly
predicts a complex ideal ratio mask (cIRM) of the target speech.
The mask predictor contains a linear layer and a sigmoid activa-
tion function. To enhance the awareness of the near-end clean
speech, the VAD path shown in Fig. 1 is designed to predict the
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probability of near-end clean speech. The VAD implementation
is detailed in Table 1.

Specifically, given an input feature Icprs, the P-AEC pre-
dicts a VAD state Pvad ∈ R2×T and the cIRM Mcoarse ∈ CF×T

respectively. A coarse estimation of the STFT representation of
the target speech Ocoarse ∈ CF×T is then generated by multi-
plying the Mcoarse and the STFT representation of microphone
signal Y , where

Ocoarse = Y ⊗Mcoarse (4)

and ⊗ denotes the point-wise complex multiplication.

3.3.2. Fine-stage

Since partial echo and noise have been removed at the coarse-
stage, the difficulty of echo cancellation and noise suppression
has been much reduced. In this case, a larger neural network
based refinement AEC module (R-AEC) is employed to re-
move the residual echo and noise and restore the near-end clean
speech.

The backbone of the R-AEC is similar to the P-AEC, which
is also based on a CRN and contains four modules: encoder,
dual-path GRU, decoder, mask prediction. There are three
main differences between the P-AEC and R-AEC in the net-
work structure. Firstly, the network size of the R-AEC is larger,
which helps to model the more complex residual echo. Sec-
ondly, the VAD path is removed from the R-AEC. Since the
echo and noise have been broadly suppressed, the near-end
clean speech is easier to be identified by the R-AEC. Thirdly,
the R-AEC applies the masking operation in the form of a deep-
filter [31] instead of point-wise multiplication. The deep filter
based mask strategy takes into account neighboring spectral in-
formation and achieves a better harmonic reconstruction.

Similar to the P-AEC, the stacked compressed magnitude
I ′cprs ∈ R3×F×T is used as the input feature for the R-AEC,
which contains the output of the P-AEC, reference and micro-
phone signals. The R-AEC takes the I ′cprs as input and outputs
a mask Mfine ∈ CF×T×(2∗Nf+1))×(Nt+Nl+1) in the deep-filter
format, where Nf denotes the number of neighbors in each side
along the frequency dimension, and Nt, Nl denotes the number
of past frames and look-ahead respectively. The estimated mask
is then applied directly to the output of the P-AEC, which can
be formulated as

Ofine(f, t) =

Nf∑

k=−Nf

Nl∑

n=−Nt

Ocoarse(f+k, t+n)⊗Mfine
f,t(k, n) (5)

where Ofine ∈ CF×T is the STFT representation of the esti-
mated target speech. The raw waveform of the target speech is
then reconstructed by an inverse-STFT (iSTFT).

3.4. Loss function

We jointly optimize the coarse-stage and fine-stage to avoid
the sub-optimization caused by optimizing each stage inde-
pendently. In our preliminary experiments, we experimentally
found that under the two stage schema, the mean absolute error
(MAE) loss obtains a higher overall perception score than the
power-law compression loss and asymmetrical loss which was
shown to be useful in the one stage model. In this case, we op-
timize the two-stage model with the phase-aware loss based on
the MAE loss, which is defined as

L(S,O) = MAE(|S|, |O|) + MAE(Sr, Or) + MAE(Si, Oi) (6)

loss = ωL(S,Ocoarse) + (1− ω)L(S,Ofine) (7)

Table 1: The configuration of the VAD path.

Layer Input size Ouput size
Conv2D 32× 5× T 16× 5× T

BN+PReLu
F-GRU 16× 5× T hidden state:8× 2× T
Reshape 8× 2× T 16× T
Conv1D 16× T 16× T

BN+PReLu
Conv1D 16× T 2× T

*T denotes the time dimension.
*All convolution layers’ kernel size and stride are set to 1.

where S ∈ CF×T denotes the groundtruth and Ocoarse, Ofine ∈
CF×T denote the estimated STFT representations of the near-
end signal respectively, | · | is the modular operation, Sr, Si

denote the real and imaginary part of the complex number re-
spectively, and the ω is a scalar controlling the degree of focus
on each stage. The ω with value of 0.3 is used to soften the
optimization of the coarse-stage, which help to alleviate the po-
tential distortion of the near-end clean speech.

To achieve a minimum near-end signal distortion at the
coarse stage, the multi-learning strategy is used where a VAD
loss is introduced:

lossvad = CrossEntropy(Pvad, P ) (8)

where Pvad ∈ R2×T is the estimated VAD state and P ∈ R1×T

is the groundtruth of the VAD of the near-end speech generated
by using the WebRTC-VAD (https://webrtc.org). The final loss
to be optimized is

lossfinal = loss+ βlossvad (9)

where β is a controlling scalar with value of 0.06.

4. Experiments and Results
4.1. Dataset

We synthesize a total of 1720 h training data by dynamically
remixing the clean speech, echo, noise, and RIR sets. Clean
speech from the DNS Challenge [32] and LibriSpeech [33]
are used as the near-end signal. The echo and reference data
pairs are from the far-end single-talk real recording dataset in
the AEC Challenge [34, 35]. The noise sets are selected from
the DNS Challenge and MUSDB1. The RIR set from the DNS
Challenge is applied to the clean speech to simulate the rever-
beration near-end signal. During data mixing, the signal-to-
echo ratio (SER), echo-to-noise ratio (ENR) and signal-to-noise
ratio (SNR) are set to [-20, 20]dB, [-5, 15]dB and [-5, 15]dB,
respectively. All waveforms are resampled at 16kHz.

4.2. Experimental setups

The 20ms Hanning window and 10ms hop-size are adopted to
perform the STFT. The model is trained for 60k steps with a
batch size of 32 and the speech duration is set to 8s. Adam
is used as the optimizer with an initial learning rate of 1e-
3. The input magnitude is compressed with the factor α =
0.3. In coarse-stage, the number of filters (NOF) of Conv2D
layers in the encoder are {16, 16, 16, 32, 32, 32, 32, 32} with
kernel size {[5, 1], [1, 5], [6, 5], [4, 3], [6, 5], [5, 3], [3, 5], [3, 3]}
and stride {[1, 1], [1, 1], [2, 1], [2, 1], [2, 1], [2, 1], [2, 1], [1, 1]},
and the hidden size of F-T-GRUs in the dual-path GRU is

1https://doi.org/10.5281/zenodo.1117372
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Table 2: Ablation study for two-stage model on a real testset.

single-talk double-talk
FE NE echo deg avg

Pvad-Rdf-AEC 4.76 4.12 4.68 4.14 4.425
P-Rdf-AEC 4.73 4.12 4.69 4.10 4.410
P-Rvad,df-AEC 4.77 4.09 4.65 4.02 4.383
Rvad-Pdf-AEC 4.76 4.10 4.68 4.11 4.413

Table 3: Comparison with single-stage models on the blind test
[34]. AECMOS denotes the average score on all scenarios.

AECMOS #param
(M)

complexity
(G Macs)

data
(h)

Rdf,large-AEC 4.439 0.94 2.98 700
LAEC-Rdf,large-AEC 4.434 0.94 2.98 700
Rdf,large-AEC Plus 4.442 2.45 7.23 700

Pvad-Rdf-AEC(ours) 4.506 1.27 2.82 700
Pvad-Rdf-AEC(ours) 4.525 1.27 2.82 1720

{[32, 64], [32, 32]}. In the fine-stage, the configuration of
the network is similar to the coarse-stage, where the NOF of
Conv2D layers is {16, 16, 32, 32, 64, 64, 64, 64} and the hid-
den size in the dual-path GRU is {[64, 128], [64, 64]}. The Nf ,
Nt and Nl are set to 3, 3, and 1 respectively when performing
the deep filtering. All network layers are configured as causal
and the BN is only performed during training.

The performance of the proposed method is evaluated us-
ing the AECMOS model [36], which can be used to estimate
the mean opinion score (MOS) with great accuracy. The AEC-
MOS model predicts an echo degradation MOSe for judging the
degradation from the echo and an other degradation MOSo for
judging other degradations (such as noise, missing audio, dis-
tortions and cut-outs). For far-end single-talk (FE), the MOSe

is applied. For near-end single-talk (NE), the MOSo is applied.
For double-talk, both MOSe and MOSo are applied, which are
denoted as echo and deg respectively. The predicted MOS
scores are from 1 to 5. A higher score corresponds to a con-
structed signal with better quality.

4.3. Results and analysis

To validate the configuration of the proposed method, the abla-
tion experiments are first conducted and the results are shown
in Table 2. The proposed method is denoted as Pvad-Rdf-AEC.
After removing the VAD path from the coarse-stage (P-Rdf-
AEC), the MOSo is degraded by 0.04 in the double-talk sce-
nario. Moving the VAD path from the coarse-stage to the fine-
stage (P-Rvad,df-AEC) also leads to a degradation on the AEC-
MOS. In addition, switching the CRN configurations between
the coarse-stage and fine-stage (Rvad-Pdf-AEC) also results in a
performance degradation. The schema of “small coarse-stage,
large fine-stage” improve the upper bound of the performance,
as it has the ability to recover the clean speech gradually.

To further verify the feasibility of the proposed two-stage
strategy, we compare it with three large single-stage baselines
constructed by removing the coarse-stage and enlarging the net-
work in fine-stage: Rdf,large-AEC: increasing the Nf and Nt in
deep filter to 5 and 5 respectively; Rdf,large-AEC Plus: further
increasing the NOF of Conv2D layers to {32, 32, 64, 64, 64,
96, 96, 128} and the hidden size in the dual-path GRU to
{[128, 256], [128, 128]}; and LAEC-Rdf,large-AEC: the Rdf,large-

2https://www.speex.org/

Table 4: Comparison with other methods on the blind test [34].

single-talk double-talk
FE NE echo deg avg

Unprocessed 1.86 4.07 2.14 4.14 3.053
Speex-AEC2 3.42 4.08 2.78 3.81 3.523

LAEC 3.36 4.14 2.92 3.94 3.590
coarse-stage 4.79 4.27 4.55 4.01 4.405

rank 1 ⋆ 4.59 4.25 4.69 4.18 4.428
DAEC-64+NRES-64[26] 4.35 4.18 4.55 4.25 4.333
Pvad-Rdf-AEC(ours) 4.80 4.32 4.69 4.29 4.525

⋆The MOS of rank 1 is used from Challenge[34].
The AECMOS model estimates MOS with high accuracy[36].

Figure 2: Visualization of the results on a double-talk scenario.

AEC with the LAEC(a subband cross-correlation based linear
AEC with NLMS) output as network input. As seen in Ta-
ble 3, the proposed two-stage method outperforms the one-stage
methods with less computational cost, and simply introducing
the LAEC as a pre-processor limits the performance which is
consistent with the conclusion in [16].

To understand the effect of the proposed method, we also
compare the difference between the outputs of the coarse-stage
and LAEC. Table 4 shows a overall comparison, from which
we can see that the neural network based pre-processing is sig-
nificantly superior to the LAEC. In addition, Fig. 2 compares
the coarse-stage with LAEC on a double-talk scenario. It’s
obvious that the output of the coarse-stage has fewer residual
echo, which facilitates the target speech restoration for the fine-
stage. The fine-stage further reconstructs the near-end signal
quite cleanly.

To validate the effectiveness of the proposed method, we
also compare with other state-of-the-art methods on the 2nd
AEC Challenge dataset[34] in Table 4. Our proposed method
outperforms the first ranked system by a large margin on all
scenarios, which proves the effectiveness of the proposed two-
stage method. It’s worth noting that DAEC-64+NRES-64 is also
a two stage method. Our proposed method achieves a higher
quality restoration of the near-end speech compared to DAEC-
64+NRES-64, which demonstrates the proposed two-stage pat-
tern is more powerful and effective. The model details and re-
sults can be found from https://github.com/enhancer12/TSPNN.

5. Conclusion
In this paper, we proposed a novel two-stage progressive neural
network for acoustic echo cancellation with a modeling capac-
ity from low-quality to high-quality. The experimental results
shows that the two-stage strategy helps to improve performance
and the improvement doesn’t come at the expense of an increase
in model size. The proposed method has been shown to be su-
perior to other state-of-the-art methods.
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