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Abstract
Speech models have long been known to overfit individual
speakers for many classification tasks. This leads to poor gen-
eralization in settings where the speakers are out-of-domain or
out-of-distribution, as is common in production environments.
We view speaker adaptation as a few-shot learning problem
and propose investigating transfer learning approaches inspired
by recent success with pre-trained models in natural language
tasks. We propose pre-finetuning speech models on difficult
tasks to distill knowledge into few-shot downstream classifica-
tion objectives. We pre-finetune Wav2Vec2.0 on every permu-
tation of four multiclass emotional speech recognition corpora
and evaluate our pre-finetuned models through 33,600 few-shot
fine-tuning trials on the Emotional Speech Dataset.
Index Terms: emotion recognition, low-resource learning, pre-
finetuning, transfer learning

1. Introduction
Speech models tend to generalize poorly to out-of-distribution
speakers due to a phenomenon called speaker overfitting [1, 2,
3]. Speaker overfitting can be problematic when deploying sys-
tems in production environments. There, speakers typically do
not exist in training corpora, and it requires time to amass suf-
ficient amounts of training data. This motivates systems which
can adapt to individual speakers “on-the-fly” with little data.

To this end, out-of-domain speaker adaptation can be
viewed as a few-shot learning problem [3]. In low-resource
data settings, learning can be difficult, particularly with the
regularization used in typical speaker-invariant learning ap-
proaches [3, 4]. However, in recent years, many approaches
to few-shot learning have found success with transfer learning,
leveraging pre-trained models which have learned representa-
tions from multiple corpora [5, 6, 7]. But, these pretraining
corpora are not necessarily relevant to target downstream tasks.
This has motivated recent work to propose an additional step
between pre-training and downstream fine-tuning called pre-
finetuning [5]. While most work has examined pre-finetuning
with multi-task learning, [8] found that large-scale multi-task
pre-finetuning performance can nearly be matched by only us-
ing corpora from tasks that match the downstream task type.

Overall, pre-finetuning has been studied extensively and
successfully in natural language processing tasks, but our study
is the first to attempt pre-finetuning for any speech or audio
processing task. We reason this is due to the comparatively
higher number of tasks and datasets with accessible licensing
for natural language. Additionally, many language tasks are
easily cross-compatible during transfer learning (e.g. every pre-
training task for T5 is trained using textual inputs and outputs
without needing to adapt the model or loss function [9]). Here,
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Figure 1: Workflow of pre-finetuning an emotion recognition
model. Wav2Vec2.0 is initialized with a separate linear classi-
fication head for each pre-finetuning dataset in order to ensure
the correct output space. Pre-finetuning tasks are continuously
randomly sampled, and each instance is mapped to the corre-
sponding classification head. Each task’s loss is computed sep-
arately and averaged during validation.

we consider the few-shot1 emotional speech recognition task.
We pre-finetune a separate model using every member of the
power set of four large emotional speech corpora according
to the workflow in Figure 1.2 We evaluate our pre-finetuned
models across 33,600 controlled few-shot classification experi-
ments. We contribute ablations and analyses into how different
experimental conditions affect pre-finetuning efficacy.

2. Related Work
Pre-trained models have been a successful case study of transfer
learning for low-resource tasks. When scaled to billions of pa-
rameters, pre-trained models have been able to generalize pre-
trained knowledge to downstream tasks through few-shot in-
context learning, taking the form of both downstream task mod-
els (e.g. [7, 10, 11, 12]) and models for synthetic data generation
(e.g. [13, 14, 15, 16]) in natural language tasks. However, capa-
bilities such as in-context learning typically only appear through
this tradeoff with model size, as they only emerge when us-
ing sufficiently large models. To date, pre-trained speech mod-
els have rarely been scaled to the same extent. The largest
model is BigSSL with eight billion parameters [17], whereas
recent work on in-context learning for low-resource language
data augmentation has used models with a minimum size of six
billion [13, 18, 16], and often reaching model sizes as large as
175 billion parameters [18]. Smaller pre-trained models lack

1We use as few as two downstream training examples.
2https://github.com/maxlchen/Speech-PreFinetuning

INTERSPEECH 2023
20-24 August 2023, Dublin, Ireland

3602 10.21437/Interspeech.2023-136



the same expansive pre-trained representations found in large
models, making it impractical to perform in-context learning
or generate high-quality synthetic data. However, due to their
smaller size, it is more feasible to perform fine-tuning to directly
transfer knowledge to downstream tasks.

But, fine-tuning still is impractical when there is not a suffi-
cient amount of data. Recent work proposed an additional learn-
ing step between pre-training and fine-tuning to better facilitate
knowledge distillation: pre-finetuning [5]. They pre-finetuned
the base and large variants of BART [19] and RoBERTa [20] us-
ing large-scale multitask corpora. Follow-up work found that it
was more efficient to do single-task pre-finetuning than to have
a diverse set of corpora [8]. With the right corpora selection,
pre-finetuning has potential to help with few-shot learning prob-
lems [21] such as speaker adaptation, but to date it has yet to be
explored in any speech processing task.

Traditional approaches to speaker adaptation focus on in-
variance using adversarial learning or regularization. [22] pro-
posed a network to jointly learn a speaker classifier and senone
discriminator through adversarial multitask learning. Several
works have investigated using KL divergence-based regulariza-
tion (e.g. [23, 24]). Other studies used gradient reversal layers
to regularize learning gains from individual speakers [25]. But,
these approaches often still require large amounts of training
data and are not as applicable to low-resource settings [22, 4].

The overall success with using pre-trained models in few-
shot learning and increasing popularity of pre-trained speech
models such as Wav2Vec2.0 [26] and HuBERT [27] naturally
motivates the exploration of pre-finetuning for few-shot speaker
adaptation. The most similar lines of work examine multi-task
learning for speech processing [28, 29, 30], which also involves
learning representations from multiple data sources. However,
the key difference compared to our setting is that classic mul-
titask learning involves training a model to learn a representa-
tion shared between a target downstream task and any auxiliary
tasks simultaneously [31]. This requires sufficient downstream
data. Pre-finetuning is a form of multitask learning which in-
stead takes place during an intermediate step dedicated to learn-
ing an auxiliary task representation, which in turn can be used as
a close initialization for a low-resource downstream task. Our
work is the first to examine pre-finetuning speech models. We
ground our study in the context of few-shot speaker adaptation
for emotional speech recognition, and draw upon findings from
[8] in our selection of pre-finetuning corpora.

3. Methodology
3.1. Corpora Selection

In this study, we focus on adapting speakers for emotion recog-
nition as our downstream task. As such, we chose four large, di-
verse pre-finetuning corpora that each fall within the category of
emotional speech recognition. MSP-IMPROV contains 8,438
improvised speaking turns from four emotions (happy, sadness,
anger, neutral) [32]. MSP-PODCAST contains 100 hours of
speech from 62,140 from speaking turns collected from podcast
recordings [33]. Each turn is annotated with one of nine cate-
gorical emotion labels (anger, happiness, sadness, disgust, sur-
prised, fear, contempt, neutral, other). The Mandarin Affective
Speech (Mandarin AS) corpus contains 25,636 utterances from
68 unique speakers, with annotations according to five emotion
labels (anger, elation, neutral, panic, sadness) [34, 35]. The
IEMOCAP benchmark contains 12 hours of audio consisting of
10,039 total turns from ten unique speakers, with nine differ-

ent emotion labels (anger, happiness, excitement, sadness, frus-
tration, fear, surprise, other, neutral). All corpora use English
speech other than Mandarin AS, which uses Mandarin.

3.2. Pre-Finetuning in Speech

In this work, we pre-finetune base Wav2Vec2.0 (94.4M param-
eters), inspired the workflow used by [8] with language mod-
els. As depicted in Figure 1, we initialize one linear classifi-
cation head for each of our pre-finetuning tasks, appropriately
setting the output space. For each training step, we load an
instance from a randomly sampled pre-finetuning task and map
the loaded instance to the corresponding classification head. We
compute a scaled loss for each task separately, as in [5, 8]. The
scaled loss is given as Li(xi,yi,θ)

ln n(i)
for a model parameterized by

θ, where Li(xi, yi, θ) is the loss for training instance i, and n(i)
is the size of the output space for the prediction task of instance
i [5]. During validation, we average the taskwise losses, which
helps prevents the model from overfitting to individual tasks
during pre-finetuning. We pre-finetune for up to 200 epochs
with early stopping after three epochs without improvement.

We pre-finetuned each model j on one of the combina-
tions of corpora from the power set3 of the corpora in Sec-
tion 3.1. That is, each combination is a set of corpora Cj

where 0 ≤ |Cj | ≤ 4 and j ∈ {1..16}. This includes a
base Wav2Vec2.0 model without any pre-finetuning as a base-
line (i.e., when |Cj | = 0). We additionally attempted to use
standard emotion recognition baselines [36] such as the Com-
ParE 2016 automatic paralinguistic feature extractor [37] with a
dense artificial neural network, but these approaches cannot sur-
pass the performance of constant prediction. This highlights the
difficulty of the few-shot version of this task. All experiments
are run using individual NVIDIA RTX A6000 GPUs. We used
HuggingFace Transformers [38] and PyTorch [39].

3.3. Downstream Finetuning

To model speaker adaptation as few-shot learning, we perform
downstream finetuning on emotion recognition for each indi-
vidual speaker in the Emotional Speech Dataset (ESD; [40]).
There are 10 English speakers and 10 Mandarin speakers. Each
study participant was a native speaker of their respective lan-
guage. Each unique lexical utterance is spoken with five differ-
ent emotions: Happy, Sad, Surprised, Angry, and Neutral. We
perform binary emotion classification4 for each speaker under
seven few-shot settings, k ∈ {2, 4, 8, 16, 24, 32, 64}, where k
is the number of available training examples. For each few-shot
setting, we randomly sample k

2
positive and k

2
negative training

instances. We conduct three trials for each downstream condi-
tion. Each trial runs for up to 200 epochs, with 30 epochs of
early stopping patience.

4. Experimental Results

Accounting for the 16 combinations of pre-finetuned models
and all fine-tuning conditions, we evaluated the effects of pre-
finetuning across 33,600 downstream model fine-tuning trials.

3We use 1 +
∑4

r=1

(4
r

)
= 16 different models downstream.

4The targets are whether or not an instance matches a specific emo-
tion, e.g. Happy/Not Happy, Sad/Not Sad, etc.
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Figure 2: Comparison of downstream task performance of mod-
els pre-finetuned on varying numbers of corpora. Each line de-
picts change in mean and standard error of F1 Macro.

4.1. Effect of Number of Pre-Finetuning Corpora

In Figure 2 we demonstrated the effect of varying the number
of corpora (n) used during pre-finetuning in the low-resource
setting. Each line represents one few-shot condition (k). Each
point represents the average test set F1 score of pre-finetuned
models for a particular pre-finetuning corpus size for all down-
stream classification tasks under few-shot condition k. The
shading around each line represents the region of standard er-
ror surrounding the mean. We observe a few patterns. In six of
the seven few-shot settings, using only one pre-finetuning cor-
pus may hurt performance compared to direct fine-tuning with-
out a pre-finetuning step, which is consistent with the “critical
point” for pre-finetuning utility, as discussed in [5]. However,
in the most extreme case with k = 2, even using just one pre-
finetuning corpus still yields performance improvements over
the baseline. After n = 1, we witness continuous improvements
in average performance as n increases. However we typically
see the largest improvements from n = 1 to n = 2. We exam-
ine possible reasons by ablating the pre-finetuning corpora.

4.2. Ablation on Individual Corpus Contributions

We attempt to quantify how much each individual pre-
finetuning corpus contributes to changes in downstream classifi-
cation performance. We controlled for each speaker, each emo-
tion, and each few-shot condition for fair comparisons. Then,
under each of these controlled settings, we compute the average
F1 score across all model trials for which pre-finetuning set Cj

includes each corpus c, subtracted by the average performance
of the no-prefinetuning baseline. For each of these controlled
settings, we calculated the change in average F1 scores for each
pre-finetuning corpus compared to baseline Wav2Vec2.0.

Figure 3 illustrates these differentials aggregated across
speakers and emotions, and stratified by each few-shot setting.
We consistently see that models pre-finetuned on combinations
of corpora which include MSP-PODCAST result in the most
improvements over baseline performance on average. In con-
trast, IEMOCAP results in the least improvements and hurts
performance on average in the k = 32 and k = 64 few-shot
data settings. This applies to MSP-IMPROV in one setting, but
MSP-IMPROV is also the second most useful pre-finetuning
corpus in the two most extreme few-shot data settings. The
fact that certain corpora hurt performance overall may explain
why there tends to be a large improvement in performance from
n = 1 to n = 2.
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Figure 3: Average difference in Macro F1 resulting from pre-
finetuning on each corpus compared to the Wav2Vec2.0 base-
line. Differences shown are aggregations controlling for the
number of few-shot examples, each speaker, and each emotion.

4.3. Ablation on Pre-Finetuning Corpus Inclusion

We further attempted to isolate the contributions of individual
corpora by examining the effect of including and excluding in-
dividual corpora in the extreme few-shot settings. That is, for
each individual pre-finetuning corpus c from the set of all cor-
pora C, we compared models pre-finetuned on Cj = C \ {c}
and Cj = {c}. As in Section 4.2, we aggregated performances
controlled for speakers, emotions, and few-shot settings, to en-
sure fair direct comparisons.

In Table 15, we see patterns mostly consistent with the anal-
ysis of corpora contributions in Figure 3. F1in is the aggre-
gated performance of the model pre-finetuned on Cj = {c}
and F1ex is the performance of the model pre-finetuned on
Cj = C \ {c}. MSP-PODCAST is the only corpus which has
any positive differentials when compared to pre-finetuning on
all other corpora. For all few-shot settings, MSP-PODCAST
has the highest differential, followed by Mandarin AS, MSP-
IMPROV, and IEMOCAP.

4.4. Scaling Downstream Training Data Sizes

From Figure 2 and Figure 3, it is clear that the most performance
improvements arise from the fewest-resource setting (k = 2
downstream training examples), but we do see performance im-
provements in higher resource settings when pre-finetuning on
all four corpora. We take a closer look into these performance
improvements to further understand the upper bounds and lim-
its of this pre-finetuning approach. In Figure 4, we compare
the performance of the full pre-finetuning setting against the no
pre-finetuning baseline in all of our data settings, stratified by
individual emotions and separated by speakers’ native language.

For both the English and Mandarin speakers, we see that
using pre-finetuning yields higher performance on average than
the baseline for all few-shot data settings for all emotions except
for “Surprise.” This may be due to the fact that while the other
four emotions are relatively common, Surprise is not as well-
represented in the pre-finetuning corpora. Surprise only ap-
pears in MSP-PODCAST and IEMOCAP. Overall, we see pre-
finetuning can boost classification performance substantially,
but performance gains generally taper off after k = 24.

5We see the same patterns at k ∈ {16, 24, 32, 64}. We omit these
results due to space constraints. F1in for MSP-PODCAST at k = 64
is 0.9126 whereas F1ex is 0.9108.
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Figure 4: Effect of number of training examples using during fine-tuning for the baseline model with no pre-finetuning (No PFT), and
the model pre-finetuned on all four corpora (All PFT). Results are stratified by emotion. Left: classification results on native English
speech. Right: classification results on native Mandarin speech.

Table 1: Average Macro F1 from pre-finetuning on each indi-
vidual corpus (F1in) compared to F1 from pre-finetuning on all
but that corpus (F1ex). F1 is aggregated controlling for the
number of few-shot examples, each speaker, and each emotion.

k Corpus F1in F1ex ∆

2

IEMOCAP 0.5048 0.6232 -0.1184
Mandarin AS 0.5812 0.6445 -0.0633
MSP-IMPROV 0.5233 0.6299 -0.1066
MSP-PODCAST 0.6150 0.6272 -0.0122

4

IEMOCAP 0.5447 0.7054 -0.1607
Mandarin AS 0.6495 0.7160 -0.0665
MSP-IMPROV 0.5623 0.7030 -0.1407
MSP-PODCAST 0.7010 0.6990 0.0020

8

IEMOCAP 0.5816 0.7747 -0.1931
Mandarin AS 0.7040 0.7862 -0.0822
MSP-IMPROV 0.6021 0.7783 -0.1762
MSP-PODCAST 0.7640 0.7549 0.0091

5. Discussion
While conventional wisdom suggests that pre-finetuning must
be performed on large-scale corpora [5], we show that it is pos-
sible to achieve strong results in the few-shot setting with small-
scale pre-finetuning. We observe that downstream task perfor-
mance may improve further as more pre-finetuning corpora are
used. In this study we only used four corpora due to licensing
and computational constraints, but our findings warrant examin-
ing the benefits of adding more corpora. A larger set may delay
the onset of the diminishing returns seen in Figure 4.

We also find evidence of a critical point in number of pre-
finetuning corpora prior to witnessing performance improve-
ments in speech tasks, as previously shown for text tasks [5].
We hypothesize that this is likely because models such as
Wav2Vec2.0 adapt well to downstream fine-tuning due to gen-
eral representations learned during their masked pre-training
process [26], while pre-finetuning on too few corpora may cause
such models to lose some of their generality. We also see that
MSP-PODCAST appears to contribute the most to improve-
ments in downstream task performance. This may be due to
it being the largest corpus, in terms of number of training in-

stances and number of emotions covered, despite averaging
each task’s loss during pre-finetuning.

Our experimental results reveal that the fewer the number
of available downstream training examples, the more valuable
pre-finetuned representations are. The k = 2 setting is the only
context in which there is not a number of pre-finetuning corpora
which results in a performance decrease on average compared to
Wav2Vec2.0 without pre-finetuning (Figure 2). Moreover, Fig-
ure 2 and Figure 3 shows that the performance improvements
over the baseline generally seem smaller with a greater number
of available training examples, indicating that pre-finetuning
helps performance the most in the extreme low-resource set-
tings, which reflects the initial stages of personalized speaker
adaptation. This approach to speaker adaptation is also uncon-
strained by language. Our pre-finetuned models adapt to each
speaker regardless of whether they speak English or Mandarin.

In this study, we held the model choice fixed, but our
workflow is compatible with any pre-trained model. Base
Wav2Vec2.0 is comparable in size to the base variants of
RoBERTa and BART, so it is likely that using a larger
Wav2Vec2.0 would result in improvements following similar
patterns to those language models. While a benefit of pre-
finetuning is that we can achieve strong performance using a
small model and limited downstream data, we would likely see
further performance improvements using larger models.

6. Conclusion
This work is the first to examine pre-finetuning on speech pro-
cessing tasks. We see large performance improvements in ex-
treme few-shot data settings (e.g. with k = 2 training exam-
ples). We contribute an in-depth controlled analysis of several
experimental factors including ablations of pre-finetuning cor-
pora, motivating applying pre-finetuning to other speech pro-
cessing tasks with more models and pre-finetuning corpora.
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