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Abstract
Benchmarks for language-guided embodied agents typically
assume text-based instructions, but deployed agents will en-
counter spoken instructions. While Automatic Speech Recog-
nition (ASR) models can bridge the input gap, erroneous ASR
transcripts can hurt the agents’ ability to complete tasks. We
propose training a multimodal ASR model that utilizes the ac-
companying visual context to reduce errors in spoken instruc-
tion transcripts. We train our model on a dataset of synthetic
spoken instructions, derived from the ALFRED household task
dataset, where we simulate acoustic noise by systematically
masking spoken words. We find that utilizing visual observa-
tions facilitates masked word recovery, with multimodal ASR
models recovering up to 30% more masked words than uni-
modal baselines. We also find that spoken instructions tran-
scribed by multimodal ASR models result in higher task com-
pletion success rates for a language-guided embodied agent.
github.com/Cylumn/embodied-multimodal-asr
Index Terms: speech recognition, multimodal learning,
human-robot interaction, embodied learning

1. Introduction
Several benchmarks aim to train simulation agents to complete
household chores [1, 2, 3]. These agents are trained to receive
and follow written instructions, neglecting the more realistic
scenario of receiving spoken instructions. However, physical
hardware agents and robots require the ability to understand
spoken language for effective interaction with human users [4].

Automatic Speech Recognition (ASR) methods can tran-
scribe spoken instructions into written text. However, erroneous
ASR transcripts can hurt the embodied agents’ ability to com-
plete the required tasks. One proposed solution for improving
ASR robustness is to use visual context, when available, to re-
cover inaudible words. Previous work studied situations where
spoken language described a single image [5]. We hypothesize
that the visual observations made by embodied agents during
task completion will be similarly helpful for disambiguating in-
audible words. In particular, we test whether visual observa-
tions from an embodied agent can be utilized by multimodal
ASR models to reason about and recover words that are masked
in the audio signal. Consider transcribing “Put the egg in the
. . . ” where the destination word is too noisy to understand (Fig-
ure 1). A unimodal ASR model must use language priors alone
to guess, for example, “fridge.” By contrast, a multimodal ASR
model can use the agent’s visual observation to correctly reason
that the user wants the egg to be put in the “microwave.”

We apply the insight that visual scene information can in-
form noisy spoken language transcription in the context of
an embodied, instruction-following agent. We synthesize a
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Figure 1: Multimodal ASR systems can leverage an embodied
agent’s visual observation to better transcribe spoken instruc-
tions instead of relying on language priors alone.

benchmark of text-to-speech (TTS) generated spoken instruc-
tions based on written instructions in the Action Learning From
Realistic Environments and Directives (ALFRED) dataset [1].
To simulate acoustic noise, we systematically mask audio seg-
ments corresponding to words in the instructions. We train uni-
modal and multimodal ASR models on spoken instructions and
evaluate their ability to recover masked words in seen versus un-
seen visual environments and heard versus unheard TTS speak-
ers. We quantify the downstream impact of erroneous ASR tran-
scriptions on an off-the-shelf ALFRED embodied agent.

We demonstrate that multimodal models can effectively use
visual observations to transcribe noisy spoken instructions. We
find that the additional visual context is useful in both seen
and unseen household environments. Visual context also can
help the ASR model generalize better to new speakers. We
demonstrate that multimodal ASR models can mitigate the ef-
fect of noise in spoken instructions on a text-trained embodied
agent’s ability to complete tasks. These findings are promising
for building embodied agents that follow spoken instructions.

2. Background
This work addresses a gap in the embodied task completion lit-
erature. Most embodied agent training assumes clean text input,
but human speech will be encountered in deployed settings. We
leverage insights from existing ASR literature to develop a mul-
timodal ASR model for noisy spoken instructions.

INTERSPEECH 2023
20-24 August 2023, Dublin, Ireland

1608 10.21437/Interspeech.2023-2262



Embodied Task Completion. Existing benchmarks aim to
train embodied agents to complete tasks by following instruc-
tions [6]. These benchmarks range from vision-language navi-
gation [7, 8, 9, 10, 11], where an agent must follow the user’s in-
structions by executing actions to reach the desired destination,
to embodied task completion [1, 2, 12, 3], where agents inter-
act with objects in the environment to complete the user’s in-
structions. These benchmarks provide language as written text,
and while a small number of benchmarks involve spoken in-
structions [13], almost all modeling attempts assume text-based
instructions. There are some works at the intersection of em-
bodied learning and acoustic signals [14, 15], but these do not
involve spoken instructions. We explore multimodal ASR mod-
eling for language-guided embodied agents.

Multimodal Speech Recognition. Previous works have
explored augmenting speech recognition with visual informa-
tion such as lip readings [16, 17], visual scenes [18, 19, 20], and
task semantics [21]. When the audio signal is clear, the visual
modality has been shown to regularize the model [22] rather
than assisting with semantic disambiguation. In contrast, visual
semantics have been shown to be helpful when the audio signal
is degraded [5, 23]. When visually salient words are masked in
the audio signal, multimodal ASR can utilize the visual input
to recover the masked words [24]. We apply these findings to
an embodied setting, where agents receiving instructions with
noisy or degraded speech can leverage their visual observations
to recover the instruction text and complete the requested task.

3. Methodology
We adapt the ALFRED [1] language-guided instruction bench-
mark to create synthesized speech commands, apply noising
policies to that speech, and attempt to recover ground truth in-
structions using a novel, multimodal ASR model.

3.1. Preliminaries: ALFRED Instruction Following Task

ALFRED [1] is a benchmark in which an embodied agent must
follow language instructions to complete tasks by navigating a
room and interacting with objects. Tasks consist of a language
goal G (e.g., “Find an egg in the fridge and microwave it.”), a
sequence of K sub-goal instructions I1...K to achieve that goal,
and target environment state conditions (e.g., an egg has been
heated). Training and validation tasks include an annotated se-
quence of actions to accomplish the goal. At each timestep, the
agent receives a single-frame visual observation v ∈ RW×H×3

and executes a discrete navigation step (e.g., RotateRight)
or object interaction (e.g., PickUp(Egg)) which updates the
environment state. The task is successfully completed when the
environment state satisfies the target state conditions.

3.2. Building a Dataset of Spoken Instructions

We create a dataset of synthetic spoken instructions because of
the lack of embodied learning datasets with speech inputs.

We extract sub-goal text instructions I from the ALFRED
dataset and apply off-the-shelf TTS models1 to generate syn-
thetic speech instructions S(I). We pair each instruction with
a visual context v, the agent’s observation when the previous
sub-goal is completed. For example, if the agent has navigated
to a microwave as the previous subgoal, the observation accom-
panying “Put the egg in the microwave” will be of a kitchen
counter with a microwave (Figure 1). Multimodal ASR models

1TTS models are sourced from the open-source Silero [25] library.
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Figure 2: Our multimodal ASR model architecture. For the uni-
modal ASR model, the visual features are not concatenated to
the word embeddings and there is no linear projection layer.

trained on our data are tasked with transcribing the speech input
S(I) into the word sequence I using the paired visual context.

Since the test examples in the ALFRED dataset are not
paired with annotated visual observations, we use the ALFRED
validation data as our test data. Our test set is partitioned into
environments that were seen and unseen during training, en-
abling us to study the effects of in- versus out-of-distribution
visual contexts on multimodal ASR. We partition the ALFRED
training data in a 90:10 split to generate our train and validation
sets. Training instructions with exact text matches in our valida-
tion or test sets are removed. In total, there are 41, 474 spoken
instructions in the training set, 5, 222 in validation, 5, 570 in
seen test environments, and 5, 140 in unseen test environments.

To examine the effects of multimodal ASR when generaliz-
ing across speakers, we create two sets of spoken instructions:
(1) we generate spoken instructions for training, validation, and
test folds using a single American English speaker TTS model,
denoted as SA(I); (2) we use 10 Indic English speaker TTS
models for training and validation, the same 10 speakers for a
heard ASR test instruction split, Sheard

I (I), and 5 different In-
dic English speakers for an unheard ASR test instruction split,
Sunheard
I (I). In all cases, TTS outputs for all sub-goal instruc-

tions within a single task are generated from the same speaker.

3.3. Injecting Noise into Spoken Instructions

Prior studies in machine translation [26] and ASR [5] have
shown that visual context is helpful when the primary modality
is degraded. Building on these insights, we corrupt the audio in
our dataset by masking audio segments in the instructions.

Following prior work [5], we apply masking at the word-
level. After segmenting instructions with wav2vec 2.0 [27] to
identify word boundaries, we mask words by substituting their
speech segments with Gaussian noise. In our controlled setting,
we can mask out different sets of words to evaluate the utility
of the visual context under different conditions.

3.4. Modeling

We train unimodal and multimodal ASR models and evaluate
their ability to transcribe noised speech. The unimodal ASR
model consists of a speech encoder and a language decoder.
The speech encoder is a frozen wav2vec 2.0 [27], pre-trained
on Librispeech [28], which encodes the spoken instruction S(I)
into a sequence of speech encodings. The decoder is a 4-layer
Transformer trained from scratch, which jointly attends over the
speech encodings and decoded words.
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Table 1: WER (%) and RR (%) for ASR models trained on the
American English TTS speaker across masking policies.

Test Set ASR Model No Mask Only Nouns All Words
20% 40% 100% 20% 40%

Word Error Rate ↓
Seen Unimodal 12.6 20.0 26.4 34.0 35.2 49.9
Seen Multimodal 11.911.911.9 19.919.919.9 24.524.524.5 30.430.430.4 29.329.329.3 46.446.446.4

Unseen Unimodal 13.8 21.421.421.4 27.6 34.7 36.3 51.7
Unseen Multimodal 12.612.612.6 21.5 26.226.226.2 33.133.133.1 32.332.332.3 50.250.250.2

Recovery Rate ↑
Seen Unimodal – 61.1 56.1 48.0 51.4 38.8
Seen Multimodal – 64.364.364.3 60.560.560.5 56.856.856.8 57.757.757.7 45.945.945.9

Unseen Unimodal – 60.6 55.9 48.4 52.0 37.5
Unseen Multimodal – 62.262.262.2 57.557.557.5 52.052.052.0 53.453.453.4 40.440.440.4

To decouple the role of the visual modality from model ar-
chitecture in ASR performance, our multimodal ASR model has
a near-identical architecture (Figure 2) to the unimodal ASR
model. The visual context v is encoded using a frozen CLIP-
ViT image encoder [29] into a feature vector. At every timestep
of generation, the CLIP feature vector is concatenated to the
decoder’s input word embedding, linearly projected back to the
original embedding dimension, and passed through the Trans-
former for generating the next word.

4. Experiments
We train unimodal and multimodal ASR models on our spoken
instructions dataset (Section 4.1) across several audio masking
policies (Section 4.2). We evaluate the added benefit of the vi-
sual modality when the audio signal is noised (Section 4.3).

4.1. Training and Inference Implementation Details

Across all versions of our spoken instructions dataset, we train
unimodal and multimodal ASR models with cross-entropy loss.
Models are trained for 50 epochs using the Adam optimizer with
a 10−4 learning rate. During inference, transcriptions are gen-
erated using beam search with a beam width of 5.

4.2. Audio Masking Policies

To evaluate the benefit of the visual modality with respect to
the degree of acoustic noise, we conduct experiments across six
noise policies for word masking. Three masking policies con-
sist of masking only nouns, since these words are the most vi-
sually salient. We identify the 100 most frequent nouns in our
training set using the Natural Language Toolkit [30] and cre-
ate three versions of our dataset where 20%, 40% and 100% of
these nouns in each spoken instruction S(I) are masked. Fol-
lowing [31], we use two noise policies that mask words at ran-
dom, where 20% and 40% of words in each S(I) are masked.
Finally, a trivial masking policy is to use the original, un-noised
audio. We apply each policy at both training and inference time.

4.3. Evaluation Metrics

We evaluate ASR models on their Word Error Rate (WER), as
well as their Recovery Rate (RR), which measures the percent-
age of correctly transcribed noised words in the dataset [5]. Fur-
ther, to quantify the added benefit from the visual modality, we
introduce two new metrics.

Figure 3: Relative Change in WER (negative is better) and Rela-
tive Change in RR (positive is better) between the unimodal and
multimodal ASR models for the American English TTS speaker
across masking policies between seen and unseen environments.

Relative Change in WER (∆WER): The relative change
in Word Error Rate for the Multimodal model over Unimodal.

∆WER =
WERM −WERU

WERU
× 100%.

Relative Change in RR (∆RR): The relative change in
Recovery Rate for the Multimodal model over Unimodal.

∆RR =
RRM −RRU

RRU
× 100%.

5. Results and Discussion
5.1. Multimodal ASR Improves Masked Word Recovery in
both Seen and Unseen Environments

We test whether incorporating visual information improves
ASR for spoken instructions SA(I) using a single, American
English TTS model in seen versus unseen visual environments.
While both unimodal and multimodal ASR models suffer from
higher WER and lower RR as the level of audio masking in-
creases, multimodal ASR models consistently outperform their
unimodal counterparts across all masking policies (Table 1).

We further observe that the utility of multimodal ASR is di-
rectly proportional to the level of audio degradation, evidenced
by increases in ∆WER and ∆RR as the proportion of masked
words increases (Figure 3). This trend suggests that visual ob-
servations are more advantageous as speech signals become
more degraded, and multimodal ASR may be more beneficial
to agents when performing tasks in noisier environments. The
multimodal models’ WER and RR improvements generalize to
unseen environments, though the improvements are less pro-
nounced than in seen environments. These results demonstrate
the viability of this approach for embodied learning, where
training and evaluation environments are often different.

5.2. Multimodal ASR Generalizes Better to New Speakers

Next, we test whether incorporating multimodal visual informa-
tion improves ASR for spoken instructions of multiple speakers
when those speakers are heard Sheard

I (I) or unheard Sunheard
I (I)

during training. Multimodal ASR is more helpful when evalu-
ated on 5 unheard Indic English speakers, compared to the 10
Indic English speakers present in the training data (Figure 4).
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Figure 4: ∆RR between the unimodal and multimodal models
across masking policies in both seen and unseen environments,
evaluated on heard and unheard Indic English speakers.

Table 2: ∆RR on the subset of words corresponding to nouns
and non-nouns from the random all-words masking policies.

Speaker(s) POS 20% Masking 40% Masking
Seen Unseen Seen Unseen

American Noun +12.7%+12.7%+12.7% +03.0%+03.0%+03.0% +31.0%+31.0%+31.0% +14.6%+14.6%+14.6%
American Other +04.4% −02.2% −00.1% −01.5%
Indic (Heard) Noun +20.1%+20.1%+20.1% +05.5%+05.5%+05.5% +40.1%+40.1%+40.1% +18.8%+18.8%+18.8%
Indic (Heard) Other −04.3% −11.9% +02.5% −01.8%
Indic (Unheard) Noun +25.7%+25.7%+25.7% +07.9%+07.9%+07.9% +45.5%+45.5%+45.5% +24.7%+24.7%+24.7%
Indic (Unheard) Other −00.7% −08.1% −01.6% −00.2%

These relationships indicate that visual signals additionally reg-
ularize model training to adapt to audio from unheard speakers.
Importantly, this relationship is observed in the joint case of un-
seen environments and unheard speakers, as will be the case for
newly deployed embodied agents in the world.

5.3. Multimodal ASR is Helpful For Visually Salient Words

We investigate whether multimodal ASR is helpful for the right
reasons by evaluating whether it recovers masked words that
are more visually observable. For the masking policies that
mask words at random, we evaluate ∆RR on the subsets of
the masked words corresponding to nouns and non-nouns. In
Table 2, we observe that masked nouns are much more likely
to be recovered than other masked words by multimodal ASR.
∆RR between nouns and non-nouns are most different in the
40% random all-words masking policy for seen environments,
suggesting that multimodal ASR is most helpful when audio is
heavily perturbed but visual observations are still familiar. The
inverse is true with 20% random all-words masking in unseen
environments, which has the lowest ∆RR. These trends reveal
that multimodal models are effective when masked words have
strong visual salience, particularly in familiar environments.

5.4. Multimodal ASR Helps Agents Complete Tasks Better

We now investigate the impact of ASR transcription quality
on an embodied agent’s ability to complete tasks and whether
leveraging visual observations for ASR mitigates the agent’s
performance degradation in the presence of noisy speech. We
perform our analysis on the Episodic Transformer (E.T.) [32],
an off-the-shelf ALFRED agent that is trained to receive a goal
text G and K sub-goal instruction texts I1...K .

Figure 5: Text-trained ALFRED agents that observe instruc-
tions transcribed by multimodal ASR achieve higher down-
stream task success than when using unimodal ASR.

We begin by extracting transcripts for the spoken instruc-
tion S(Ii) corresponding to every sub-goal instruction Ii for
each episode. Transcripts are extracted for the American En-
glish speaker from unimodal and multimodal ASR models,
across four different masking policies (no masking and 20%,
40%, and 100% noun masking). The ground-truth goal text G
and the transcribed sub-goal instructions are passed to E.T., and
the agent attempts to complete the task using the transcribed in-
structions. We evaluate the agent’s Task Success Rate on the
ALFRED validation set, in the seen environments.

We observe that transcribed instructions from both uni-
modal and multimodal ASR models lead to lower model perfor-
mance than the ground-truth instructions (Figure 5). However,
the multimodal ASR models’ transcriptions lead to lower per-
formance degradation. We further observe that as the level of
audio masking increases, the performance gap between the uni-
modal and multimodal ASR increases. These findings demon-
strate that not only does multimodal ASR lead to more accu-
rate transcription of spoken instructions, it also results in better
downstream task completion for the embodied agent.

6. Conclusions
In this work, we address the challenge of embodied task com-
pletion by following spoken instructions. We demonstrate that
embodied agents can use their visual observations to improve
ASR when transcribing spoken instructions. ASR models using
visual observations achieve better WER and RR across home
environments, speakers of varied demographics, and levels of
audio degradation. These models also show higher improve-
ment when spoken instructions become noisier and when tran-
scribing speech from unheard speakers, improving the robust-
ness of ASR. Finally, we demonstrate that multimodal ASR
can improve a pre-trained embodied agent’s ability to complete
tasks successfully from spoken instructions. These findings mo-
tivate the use of visual observations in the implementation of
ASR for language-guided embodied agents.

Our work presents a proof-of-concept for spoken instruc-
tion following by creating a synthetic speech dataset and sys-
tematically masking words in the audio. Future work should
investigate how our findings generalize to real human speak-
ers and more realistic audio degradation. Further, while we
use only a single visual observation, future work should ex-
plore utilizing 3D scene representations built by embodied
agents [33, 34], as well as other strategies to actively search
the visual environment, to resolve ambiguities in ASR.
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