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Abstract
Self-supervised learning (SSL) of speech has shown impressive
results in speech-related tasks, particularly in automatic speech
recognition (ASR). While most methods employ the output of
intermediate layers of the SSL model as real-valued features for
downstream tasks, there is potential in exploring alternative ap-
proaches that use discretized token sequences. This approach
offers benefits such as lower storage requirements and the abil-
ity to apply techniques from natural language processing. In this
paper, we propose a new protocol that utilizes discretized token
sequences in ASR tasks, which includes de-duplication and sub-
word modeling to enhance the input sequence. It reduces com-
putational cost by decreasing the length of the sequence. Our
experiments on the LibriSpeech dataset demonstrate that our
proposed protocol performs competitively with conventional
ASR systems using continuous input features, while reducing
computational and storage costs.
Index Terms: self-supervised learning, discrete tokens, dis-
cretized input, speech recognition.

1. Introduction
Over the past decade, remarkable advancements have been
made in automatic speech recognition (ASR), largely due to
the rapid development of deep neural networks [1–8]. These
networks have significantly expanded the capabilities of speech
recognition models. Additionally, the increasing availability
of computing resources has enabled the training of ASR mod-
els using vast amounts of transcribed data, resulting in fur-
ther improved performance [9, 10]. However, since deep
neural networks require substantial amounts of data, some re-
searchers have sought to increase their capacity by incorporat-
ing more transcribed data [11]. Nevertheless, this approach
has limitations, as a significant portion of available data re-
mains untranscribed. To address this, researchers have proposed
leveraging untranscribed data through unsupervised and semi-
supervised learning techniques [12–14]. Among these meth-
ods, self-supervised learning (SSL) [15–19] has achieved im-
pressive results in speech related downstream tasks [20]. There
are several methods to make models more suitable for vari-
ous downstream tasks, including fine-tuning pre-trained mod-
els [15, 16], extracting robust speech features [21], and inserting
adapters [22].

Advances in speech processing technology have led to the
development of various applications that improve the conve-
nience of human life, such as voice enabled robots and smart
speaker. These advancements have greatly enhanced the ability
of machines to interact with humans. However, the collection
of speech data through such systems raises concerns about pri-
vacy [23]. Users may worry about the potential for their per-

sonal information to be leaked during data transmission or due
to security issues in the storage system of such systems. One so-
lution to these concerns is to transform speech signals into a dif-
ferent form of encoding that does not contain speaker-specific
information while retaining the essential linguistic information.

In a study by Van et al. [24], it was observed that training
a vector quantization-variational autoencoder (VQ-VAE) model
with general speech representation learning can extract speaker-
independent features from speech. Using VQ-VAE, the speech
is discretized and encoded in discrete tokens, where each to-
ken represents the speech information in a short time interval.
Later, several other SSL-based methods have been developed
for learning general speech representations [15–17, 25]. These
SSL models can also be used to discretize speech either through
the vector quantization module in the model [15, 25], or by
applying k-means clustering on hidden embeddings from these
models [16, 17]. Note that it was shown that the higher layers
of SSL models retain less speaker information than the lower
layers, and the discretization step can further cleanse speaker-
specific information. Using discretized tokens from an SSL
model as speech representations has several other advantages:

1. Small storage and transmission size.
2. Preservation of original speech duration information.
3. Intermediate representation with both acoustic and linguistic

information but with less speaker specific information.

Previous studies have investigated the use of discrete-token in-
put for ASR models [25, 26], where 13.5 thousand unique dis-
crete tokens are used. However, this approach did not outper-
form conventional log-mel-filterbank features in terms of ASR
performance, unless a small BERT [27] model trained with dis-
cretized token sequences is additionally used in front of ASR
model. As a result, the wide application of discrete token input
in speech-processing tasks may be limited.

Given the advantages of using discretized token and the re-
sult of previous study, we are motivated to investigate using dis-
crete tokens extracted from state-of-the-art (SOTA) SSL mod-
els to replace conventional speech processing inputs such as
raw wave or acoustic features, such as mel filter bank [28]. In
our study, we use WavLM [17] to extract speech representa-
tions and a k-means model to obtain discrete tokens. Specifi-
cally, maximum 2, 000 unique tokens are used to represent the
speech features, less than that in previous study [26]. Once the
speech data is discretized, it can be used in training and infer-
ence. The discrete tokens offer a significant reduction in data
size. For example, in certain conditions, 1,000 hours of speech
data can be compressed from around 100 GB to less than 1 GB,
which can be conveniently loaded to RAM at once. To prove
the feasibility of this approach, we conduct experiments in end-
to-end (E2E) speech recognition (ASR) task, using sequence-
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Figure 1: Illustration of proposed ASR with discretized input.
The speech discretization process is shown on the left. On the
right side is Seq2Seq model from discrete tokens to text (upper).

to-sequence (Seq2Seq) models. So far, we only reduce the size
of data in terms of storage. However, it doesn’t affect the com-
putation efficiency, which is dominated by the model size and
sequence length. To address the latter factor, we propose two
methods. First, we can combine consecutively repeated tokens
into a single one [29]. Second, we apply subword modeling on
discrete tokens [30] to divide the sequence into subsequences,
each of which is represented as a single meta-token. We evalu-
ated our method on LibriSpeehch 100 hr subset for fast evalua-
tion and LibriSpeech 960 hr. All pre-trained models and source
code required for conducting experiments will be made pub-
licly available with a license that allows free usage for research
purposes.

2. Speech Recognition Using Discretized
Representation

In this section, we present the details of the speech recognition
model using discrete tokens in details, shown in Fig. 1, includ-
ing data processing, speech recognition models and data aug-
mentation methods.

2.1. Discretized Speech and Length Reduction

This section provides a detailed description of the speech dis-
cretization process. Instead of using the original continuous
speech or acoustic features, discrete tokens are employed as in-
put in our proposed ASR model. This approach is similar to
the one used in pre-training HuBERT [16]. k-means cluster-
ing is applied to the hidden embeddings from intermediate SSL
models to generate discretized speech encoding. It is worth
noting that different features can be used for k-means cluster-
ing, depending on the task, including various SSL models or
pre-trained supervised-learning models. Additionally, other dis-
cretization techniques, such as those proposed in [24, 31–33],
can also be used.

In our experiments, we use a pre-trained WavLM
model1 [17] to extract hidden embeddings. It was trained pri-
marily on learning the masked language models by predicting
the pseudo-labels while performing speech denoising simul-
taneously. It achieved the best results on many downstream
tasks in the SUPERB [20]. Note that the WavLM large model
used comprises 24 hidden layers. The last Transformer-Encoder
layer from the model is chosen to extract hidden embeddings
because it has been reported that the last layer contributes the
most to ASR downstream tasks [17, 34], according to a learned

1We use WavLM Large model from https://github.com/
microsoft/unilm/tree/master/wavlm

weight vector used to combine the hidden embeddings from all
layers during training the ASR model. A k-means is trained to
cluster the hidden embeddings and obtain the cluster indices as
discrete tokens used as input to the ASR model. The resulting
discretized input sequence has the same length as the sequence
of hidden embeddings from the WavLM model, which produces
speech features at a rate of 50 frames per second.

In Tab.1, we compare the data sizes of different data for-
mats including raw waveform, conventional acoustic features,
SSL-based features, and discrete tokens. Let us take a single-
channel speech utterance of T seconds as an example. The size
of raw waveform data depends on the sampling rate and the au-
dio sample encoding. Here we take the common settings used
in speech recognition, i.e. 16 kHz wav in 16-bit signed inte-
ger form. For acoustic features, we use a D-dimensional float
(4 Bytes or 32 bits) vector with a frame shift of 10ms, which
corresponds to a rate of 100 frames per second. An example
value of D is 80 used in [35]. We illustrate the SSL-based
features using a single-layer hidden embedding from WavLM
model stored as float vectors. While for the discrete tokens, we
take the WavLM features clustered with a k-means model of
maximum 4096 clusters (i.e. 12-bit).

Table 1: Data size (bit) comparison of a T-second utter-
ance among: 1) 16 kHz raw waveform in 16-bit wav format;
2) acoustic features in D-dimensional float vector with 100
frames/sec.; 3) SSL-based features using WavLM; 4) discrete
tokens in 12-bit with 50 frames/sec.

Data format Data size (bits)

Raw waveform 16× 16000× T
Acoustic features 32×D × 100× T
SSL-based features 32× 1024× 50× T
Discrete tokens 12× 50× T

While this rate is efficient in most cases, we can further im-
prove computational efficiency by removing repeated tokens
and applying subword modeling. In [29], consecutively re-
peated discrete tokens are combined into a single token. Sub-
word modeling, originally proposed in [36, 37] to address the
open vocabulary problem in text, was applied to discrete speech
tokens from vector-quantization [30] to reduce time resolution
by identifying and grouping frequently occurring patterns as a
single meta-token. To achieve this, we use Sentencepiece2 with
unigram model [37].

2.2. ASR with Discretized Input

This section provides an overview of the model utilized in our
study. First, every D-dimensional continuous SSL feature vec-
tor of speech data is mapped to an N -bit discrete token, which
serves as an intermediate representation between the acoustic
features and the linguistic units. For example, D is 1024 and
N is 12 in our experiments. The model acts as a “translator”
to convert discrete tokens into text transcriptions. The input
sequence comprises of discretized speech, while the output se-
quence is the transcription text. Typically, the input sequence
is longer than the output sequence. Monotonic alignment is
maintained between the input and output, allowing us to in-
corporate the connectionist temporal classification (CTC) [1]
loss. To accomplish ASR with discretized input, we utilize

2https://github.com/google/sentencepiece
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the joint CTC/attention-based encoder-decoder models that are
used in acoustic feature-based end-to-end speech recognition
systems [38]. Note that a randomly initialized linear embedding
layer is used before the encoder to extract learnable features for
input discrete tokens.

2.3. Data Augmentation for ASR with Discretized Input

In this section, we present the data augmentation method em-
ployed in our experiments.
Time-masking Masking is a fundamental technique that has
been widely adopted in various machine learning tasks, such
as speech recognition [39], computer vision [40], and natural
language processing [27]. This technique involves concealing
a portion of the input data during the training phase, which
forces the model to learn to make predictions based on incom-
plete information. Time masking is a specific type of masking
where a continuous segment in the input sequence is masked,
and the model is expected to predict the correct output based on
the remaining information. By exposing the model to partially
masked inputs, time-masking helps to improve the model’s gen-
eralization ability and makes it more robust to different types of
noise and signal perturbations. In our work, we apply multiple
time masks on the embedding sequence of discretized tokens.

3. Experimental Results
3.1. Setup

In this study, we examined the effectiveness of the proposed
protocol on the LibriSpeech corpus [9], which is a widely used
benchmark dataset for ASR. To expedite the process of tun-
ing hyper-parameters, we employed the subset comprised of
100 hour of clean speech as the primary dataset for conduct-
ing our experiments. All evaluations are performed on dev-
{clean,other} and test-{clean,other} sets. When doing exper-
iments with all 960 hours LibriSpeech data, speed perturbation
with factors 0.9 and 1.1 are used to increase training data by
two folds. However, no speed perturbation is applied for exper-
iments with train clean 100. All k-means models are trained
using around 100 hours of speech from training sets. To this
end, a 100-hour subset is randomly selected when using all Lib-
riSpeech as the training set.

Our implementation is based on ESPnet [41], an open-
source toolkit for end-to-end speech processing. Our ASR mod-
els use the joint CTC/attention-based encoder-decoder architec-
ture based on the E-Branchformer [42]. The encoder consists of
12 blocks, each with 4 self-attention heads, a convolutional gat-
ing multi-layer perceptron (cgMLP), and a feed-forward net-
work (FFN) with an intermediate hidden dimension of 1024.
The cgMLP convolution kernel size is 31. For the decoder, we
used a 6-layer Transformer with a FFN dimension of 2048. We
set the dropout rate to 0.1 and used 5,000 BPE subword units for
output tokens. We set the CTC weight to 0.3 and did not em-
ploy language models in our experiments. For ASR decoding,
we set the CTC weight to 0.3 and the beam size to 20.

3.2. LibriSpeech100 Baselines

The performance of the baseline systems is presented in Ta-
ble 2. We employ three baseline systems to evaluate the per-
formance of our proposed method. The first system uses log-
MelFilterbank (FBank) features with a frame shift of 10ms,
while the other two systems adopt self-supervised learning fea-
tures previously used in [21]. The difference between the latter

Table 2: LibriSpeech-100 baseline WERs (%) of continuous
feature-based ASR model using log-Mel-Filterbank (FBank),
WavLM-Large with weighted-sum of all layers’ and WavLM-
Large only last layer’s acoustic features.

Feature dev test
clean other clean other

FBank 8.1 21.6 8.3 22.2

WavLM-Large weighted-sum 3.5 6.0 3.5 6.2

WavLM-Large last-layer 3.4 6.4 3.4 6.5

two is whether the acoustic model uses hidden representations
from the last layer of the WavLM large model or a weighted-
sum of all layers as input features. A convolutional subsam-
pling layer is applied between the features and acoustic models
to reduce the time resolution as the default setting, resulting in
a frame shift of 40ms. SpecAugment [39] is applied to both
FBank and WavLM speech features. The results show that us-
ing features from the WavLM-Large model can achieve signifi-
cantly better performance, especially on the dev-other and test-
other sets compared to FBank. Note that using only the embed-
ding of the last-layer is slightly inferior to using a weighted-sum
of all layers.

3.3. Number of Discrete Tokens

Table 3: LibriSpeech-100 WERs (%) of discretized input-
based ASR with various number of discrete tokens: {100, 500,
1000, 2000}. Phoneme purity (phn pur), discrete token purity
(dsc pur) and phone-normalized mutual information (PNMI)
are listed for each type of discrete tokens.

# of tokens k-means quality dev test
phn pur dsc pur PNMI clean other clean other

100 0.5750 0.3183 0.5591 8.1 18.2 8.4 19.0
500 0.6732 0.1096 0.6740 6.8 14.5 6.8 14.9
1000 0.7075 0.0721 0.7075 5.8 13.0 6.2 13.2
2000 0.7357 0.0391 0.7394 5.6 12.5 5.9 12.8

We report the ASR performance of models trained on
train clean 100 dataset using discretized inputs with different
discrete tokens numbers, as shown in Table 3. Our experi-
ments involve setting varying numbers of clusters for the k-
means model to obtain discrete tokens. These tokens are fed
into the seq2seq model as discretized inputs, without reducing
the length. To evaluate the quality of k-means labels, we fol-
low the approach of [16] to compute the phoneme purity, dis-
crete token purity, and phone-normalized mutual information
(PNMI). These metrics are computed by comparing the discrete
tokens with the phoneme alignment3 [43] using the dev sets.
In [16], PNMI was used to assess the quality of discrete tokens.
Our ASR results show that more discrete tokens lead to better
PNMI, as well as better ASR performance. Using 2000 clusters
yields the best word error rates (WERs) of 5.9% and 12.8% on
test-clean and test-other, respectively. These two numbers are
about 29% and 42% better than those of the FBank-based ASR
system, however they are worse than the WavLM feature-based
systems. Based on the results, we use 2000 as the number of
tokens in the subsequent experiments.

3It is based on a Montreal Forced Aligner, available at https://
zenodo.org/record/2619474#.ZAblHuyZNqs
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3.4. Length reduction method

Table 4: LibriSpeech-100 WERs (%) of discretized input based
ASR with different length reduction methods on 2000-token rep-
resentation, including de-duplication (dedup), apply subword
modeling (SW) and combined together. In [26], a VQ-Wav2Vec
is used to discretize speech (13.5K tokens), together with fine-
tuning a pre-trained discrete token-BERT and using a 4-gram
LM in decoding.

Length Reduction Avg. Input Length dev test
(train / dev) clean other clean other

vq-wav2vec [26] + token-
BERT + 4-gram LM

- / - 4.0 10.9 4.5 12.1

WavLM-token 633.8 / 358.1 5.6 12.5 5.9 12.8
+SW 6000 349.9 / 200.1 5.5 11.8 5.8 12.0

WavLM-token dedup 468.7 / 270.9 6.4 12.7 6.4 13.2
+SW 6000 249.4 / 144.5 5.8 12.3 6.0 12.5

We evaluated the ASR performance of models trained on
the LibriSpeech-100 dataset using different methods to reduce
the length of the input sequence. First, we used subword mod-
eling alone and set the total number of subwords to 6,000 based
on the original WavLM discrete tokens. This resulted in an av-
erage input sequence length reduction of approximately 44%,
and improved the ASR performance by 6% on test-other. Next,
we applied de-duplication by combining consecutively repeated
tokens from the original WavLM token sequence, which re-
duced the average input sequence length by about 24%. The
ASR performance degrades by 3% on test-other set. Finally,
we applied subword modeling on the discrete token sequence
after de-duplication, resulting in a total sequence length reduc-
tion of 60%. Using this shorter sequence, we achieved a final
performance of 12.5% on test-other. Among the above 4 differ-
ent types of sequences, subword modeling on original discrete
tokens achieves the best performance. Comparing our result
against the results in the previous study [26], it is worse. Note
that in [26], a VQ-Wav2Vec [25] with 13.5 thousand discrete to-
kens is used, together with a token-BERT fine-tuned on the 100-
hour training set. A 4-gram language model (LM) was used in
decoding. Given this, our method is much simpler while achiev-
ing close performance. Since applying both subword modeling
and de-duplication achieves the best computation efficiency due
to the shortest sequence length, we use them together in our
subsequent experiments on the large-scale data for fast training
speed.

3.5. LibriSpeech960 Results

Table 5: WERs(%) of continuous features and discretized input
w/. and w/o. 1-D Convolutional downsampling at a rate of 2
(1D-Conv) on LibriSpeech960.

Feature dev test
clean other clean other

ASR-FBank 2.5 6.3 2.6 6.2
ASR-WavLM last-layer 1.9 3.9 2.0 4.0

Discrete tokens (dedup) 2.9 6.8 3.0 7.0
Discrete tokens (dedup+1D Conv) 2.9 6.8 3.1 6.9

In Table. 5, we present the performance on LibriSpeech 960
hours data with speed perturbation. As baselines, we listed the
conventional FBank-based ASR system and the WavLM-Large

feature-based ASR models. We can see that using discrete
token input with 2000 unique tokens achieves slightly worse
performance than the FBank. However, the gap is relatively
small. More hyper-parameter searching efforts are required on
LibriSpeech 960 hours, including the length reduction method,
time masking ratio, number of k-means clusters and the vocabu-
lary size of subword modeling, etc. We found that training ASR
models using the discrete units on large-scale data can be quite
efficient. We further reduce the input sequence length by em-
ploying a 1-D convolution layer with a downsampling rate of 2.
It is observed that applying a downsampling layer didn’t hurt the
performance while reducing the length by 50%. About compu-
tation efficiency, it took us 23 minutes/epoch to train a discrete
token-based ASR model with 1-D convolution layer on 4 Nvidia
V100 GPUs, which is about half of that using FBank features.
We attributed this to three reasons. First, input sequence length
was reduced significantly, resulting in small computation and
memory footprint. Second, large batch sizes can be achieved
given that the input sequences are short. Last, the I/O overhead
can be reduced because all the training data can be loaded to
RAM at the beginning. In theory, the total size of 960 hours of
training data can be as small as 0.3 GB (≈ 960 ∗ 3600 ∗ 50 ∗ 12
bits) 4.

4. Conclusions
In this paper, we proposed a new protocol for E2E-ASR that
uses discrete tokens as input to replace conventional raw wave-
form or acoustic feature input. These tokens are computed as
the k-means cluster indices of hidden embeddings derived from
state-of-the-art semi-supervised learning (SSL) models, specif-
ically WavLM. Using discrete speech data can considerably re-
duce the size of data required for transmission and storage. By
implementing de-duplication and subword modeling, the se-
quence length can be reduced, resulting in better computation
efficiency. We experimentally compared different combinations
of length-reduction method and provide the results. In addition,
the discrete tokens computed from hidden embeddings of SSL
models trained in general representation learning may preserve
less speaker information, thus providing the benefit of preserv-
ing speaker privacy. Compared with previous studies on ASR
with discrete tokens, our proposed methods is more straight-
forward. The experiments on the LibriSpeech dataset show
that the proposed methods can achieve competitive results com-
pared to conventional acoustic features. Future research could
involve investigating other discretization techniques and ensem-
bling discrete tokens to further enhance speech recognition per-
formance.
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