
A Study on the Importance of Formant Transitions for Stop-Consonant
Classification in VCV Sequence

Siddarth Chandrasekar∗1, Arvind Ramesh∗2, Tilak Purohit3,4, Prasanta Kumar Ghosh5

1Indian Institute of Information Technology, Design and Manufacturing, Kancheepuram, India
2National Institute of Technology Tiruchirappalli, India

3 Idiap Research Institute, Martigny, Switzerland
4 École polytechnique fédérale de Lausanne (EPFL), Switzerland

5 Indian Institute of Science (IISc), Bengaluru, India
siddarthc2000@gmail.com

Abstract
This study analyzes formant transitions in six English stop-
consonants in vowel-consonant-vowel (VCV) sequences. We
investigate whether natural speech preserves formant patterns,
and if not, how it affects stop-consonant perception and auto-
matic classification. We specifically ask three questions: 1) To
what extent these formant transition patterns are preserved in
naturally produced VCV sequences? 2) If not preserved, does
it have any effect on the perception of the stop-consonant? 3)
How does the classification of stop-consonants by automatic
classifiers change when formant transition patterns are not pre-
served? We found that 33.56% of the corpus deviate from the
formant transition pattern. The perception test reveals an Un-
weighted Average Recall (UAR) of 91.97% in identifying the
stop-consonants in the VCV sequences when the pattern is not
preserved compared to 93.54% when it is preserved. The best
UAR from an automatic classifier is 68.35% and 77.5% in these
two cases, respectively.
Index Terms: Formant transitions, Stop-consonants, Speech
analysis

1. Introduction
Stop-consonants, also known as stops or plosives, are formed
by obstructing the airstream in the vocal tract, resulting in oc-
clusion in the oral cavity, followed by the release of the blocked
air stream. These stops can be classified into two categories:
voiced and unvoiced. While stop production requires transient
release of air in the oral cavity, vocal cords vibrate during voiced
stops (/b/, /d/, /g/) production unlike unvoiced stops (/p/, /t/,
/k/). Despite their similar articulatory dynamics, voiced and un-
voiced pairs (/b/ & /p/, /d/ & /t/, /g/ & /k/) are acoustically dis-
tinct. As a result, stop-consonants have been extensively stud-
ied to understand the relationship between motor movements
and speech perception [1, 2, 3]. Moreover, they are found to
provide crucial phonetic information about the words they are
a part of [4, 5], thus playing an important role in word percep-
tion and recognition. In the following section, we discuss the
previous research on stop-consonants in two parts, namely 1)
perception studies in humans [6, 7, 8, 9, 10], and 2) recognition
studies in machines [11, 12, 13, 14].

Perception of stop-consonants: Studies on the perception of
stop-consonants began with exploring perceptual cues such as
formants and their transitions [15, 6, 7, 16, 8]. Formant transi-
tions, which are frequency shifts in vowel formants when they
join with consonants, play a crucial role in perceiving vowel-
consonant (VC) and consonant-vowel (CV) pairs. Since conso-
nants are often short and weak, formant transitions are essential
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cues for perceiving them in a VC pair. It has been reported in
the past that the relative dynamics of F2 with respect to F3 plays
an important cue to place of articulation [6, 7, 8]. Previous lit-
erature has studied the relationship between speech articulation
and formants. For instance, the height of the jaw and tongue
affects F1 and F2, respectively [17], while the degree of mouth
opening and tongue constriction affects F1 and F2 [18]. These
investigations suggest that F1 and F2 play a significant role in
the perception of stop-consonants, as they result from tongue
and labial constriction [17, 18].

Since vocal tract configuration affects the formants [16],
they are shown to follow a fixed trend across subjects for a given
vowel-consonant combination [2, 6, 16, 7]. The widely used
formant loci (transition trajectory) derived in [16] are based on
spectrographic features of synthesized American-English CV
utterances. These loci were hand-painted and then converted
into sounds for the perception test. These formant loci detail
the formant frequency and transition for a selected combination
of stop-consonants and vowels. We resort to these formant loci
as a standard pattern for the formant transition trajectory for this
study. [2, 19] demonstrated that deviations in the vowel’s for-
mant frequency from the pattern induce insignificant changes in
the auditory impression related to consonant perception.

Classification of stop-consonants: Being one of the most vi-
tal cues, formant transitions were extensively utilized in classi-
fying stop-consonants using statistical and machine learning al-
gorithms [11, 12, 13, 14, 20, 21]. The earliest consonant recog-
nition was carried out via a statistical approach of modelling
the formants [11]. Rather than just plain formant transitions, a
combination of multiple acoustic properties was shown to aid in
identifying the consonant [12, 20, 21]. Time-Delay Neural Net-
works (TDNNs) [13] was one of the initial works to capture the
spatial relationships in speech processing. They utilize time-
delay windows (translation invariant filter) to capture the tem-
poral relationship in the spectral coefficients to identify voiced
stop-consonants /b/, /d/ and /g/. The ability of the TDNNs
to capture the temporal relationship in acoustic features such
as formant transition enabled it to surpass then state-of-the-art
models such as Hidden Markov Models (HMMs).

Relevance of analyzing formants today: Although formants
are no longer being explicitly modeled for tasks like Automatic
speech recognition (ASR) or Text-to-Speech (TTS) however,
they still provide important cues for fine course speech eval-
uation and perception studies. Recent study [22] have shown
formant transitions to be a cue for distinguishing between frica-
tive. [23] showed formant transition information helps in the
estimation of place and manner of articulation for fricatives /f/,
/s/, and /sh/. [24] extended study of formant transitions to alve-
olar and the bilabial nasal phonemes for the Indian language
Telugu. Ongoing studies investigating sensorimotor adaptation
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of speech [3, 25, 26] utilizes formant information such as for-
mant shifts, transitions, and perturbations to reveal adaptation
within the speech motor system. All these recent works show
the importance of analysing speech formants.

In this study, we aim to analyze formant transitions in the
context of VCV sequences and the perception and classification
of the VCV sequences. Though few recent studies [27, 28, 29]
discuss the effects of a few factors, such as spectral shape
affecting the perception of stop-consonants, none of them have
analyzed the impact of formant transition that deviate from the
pattern. Our motivation to conduct this study is to address the
following three questions:
1) Does the naturally produced VCV sequences always follow
a formant trajectory similar to the known pattern [16] or are
there some inherent variations occurring in formats?
2) If not, does it affect (if any) the perception of that stop-
consonant?
3) How does the classification of stop-consonants by automatic
classifiers alter when formant transition patterns are not upheld?

To conduct this study, we make use of the SPIRE VCV an
acoustic-articulatory corpus [30]. Examining 900 VCV sam-
ples and their spectrograms, 66.44 % of them were found to
follow the pattern and the rest do not. The 33.56% not follow-
ing the pattern answers the first question in this study, that there
are variations in the formant structure for the stop-consonant
production. With the first answer in place, we conduct percep-
tual experiments with 52 listeners to study the effect of the for-
mant transitions in the perception of stop-consonants. Further to
answer our third question, classification experiments were con-
ducted to evaluate the performance of machine learning models.
We found that humans achieved a UAR of 93.54% and 91.97%
in identifying the samples that follow the pattern and those that
do not, respectively. In comparison, the best classifier recorded
accuracies of 77.5% and 68.35%.

2. SPIRE VCV corpus

The SPIRE VCV corpus[30] consists of concurrent acoustic and
articulatory data for symmetric vowel-consonant-vowel (VCV)
sequences. The corpus consists of samples recorded at three
different speaking rates, that is slow, normal, and fast, from ten
non-native English speakers (five female and five male) of age
18 to 27 years. All the subjects were fluent in English. It has all
85 possible combinations of seventeen consonants (C), namely,
/b/, /ch/, /d/, /f/, /g/, /jh/, /k/, /l/, /m/, /ng/, /n/, /p/, /r/, /s/, /t/, /v/
& /z/ and five vowels (V), /a/, /e/, /i/, /o/ & /u/. Hence, there
are a total of 450 VCV recordings (= 3 rates × 3 repetitions per
rate × 5 vowels × 10 subjects) for every consonant and a total
of 7650 VCV recording samples (= 450 samples per C × 17 C).
Initially, the audio was recorded at 48 kHz and then was down-
sampled to 16 kHz. All the utterances are of the format “Speak
VCV Today.” And the VCV boundaries were manually anno-
tated by observing the wideband spectrogram, the raw wave-
form, and the glottal pulses. For this study we resort to the con-
sonants /p/, /t/, /k/, /b/, /d/, /g/ with slow speaking rate, which
accounts for 900 samples (= 6 consonants × 3 repetitions× 5
vowels × 1 rate× 10 subjects). The slow speaking rate is used
as they provide a relatively wider transition period which per-
mits a better evaluation and annotation of the formants [31, 32].
The mean and standard deviations of the duration of the con-
sonant regions are reported in Table 1. The spectrogram and

formants were extracted using Librosa 1 and PRAAT 2 respec-
tively.

Table 1: Consonant region duration (in seconds) for the VCV
combinations from the SPIRE VCV Dataset for slow speaking
rate. A(B), A represents the mean duration, and B represents
the standard deviation.

/b/ /d/ /g/ /p/ /t/ /k/
/a/ 0.13(0.04) 0.10(0.04) 0.10(0.03) 0.22(0.06) 0.17(0.04) 0.18(0.08)
/e/ 0.14(0.03) 0.14(0.07) 0.15(0.05) 0.22(0.06) 0.21(0.08) 0.22(0.08)
/i/ 0.14(0.04) 0.16(0.09) 0.16(0.09) 0.24(0.09) 0.21(0.07) 0.23(0.09)
/o/ 0.17(0.08) 0.17(0.09) 0.21(0.12) 0.23(0.07) 0.23(0.11) 0.26(0.15)
/u/ 0.13(0.04) 0.13(0.06) 0.17(0.08) 0.23(0.09) 0.23(0.11) 0.23(0.09)

3. Study Protocol
3.1. Data Preprocessing

All 900 samples were manually inspected for their formant loci
to evaluate the consistency of the human speech production sys-
tem. The first two formants, F1 and F2, were extracted and
overlaid on their spectrograms 3. First, the formant points be-
tween the nuclei of the vowel and the consonants were manu-
ally corrected when the formants from PRAAT were erroneous,
which is common in highly transient boundaries [33]. Further-
more, samples with noisy formants from PRAAT, which were
irreparable due to noisy or unclear spectrogram, were discarded.
This led to the removal of 85 samples, from which a sample is
shown in Fig 1.

Figure 1: The red and blue dots represents F1 and F2 respec-
tively. Such samples were discarded due to their noisy formants.

Figure 2: The corrections were done between the vowel nuclei,
represented by a magenta dashed vertical line, and the con-
sonant boundary represented by a black dashed vertical line.
While the blue dots represent the F2 formant trajectory from
PRAAT, the white dots indicate the manually corrected trajec-
tory.

With their spectrogram as a reference, a total of 159 sam-
ples’ formant trajectories were manually corrected for apparent
errors. These errors include noisy jumps in the formant tra-
jectories in the transient region, points of F2 being detected as

1https://doi.org/10.5281/zenodo.4792298
2http://www.praat.org/
3Supplementary Document: https://tinyurl.com/ybctp7tp
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Table 2: Consonant-wise distribution of the 900 samples. Disc
denotes discarded samples, Corr denotes the corrected samples,
and Orig refers to the samples which were not noisy/corrected.

/p/ /t/ /k/ /b/ /d/ /g/ Total
Disc 28 17 28 0 9 3 85
Mis-

Match
Corr 5 1 6 0 0 0 12
Orig 37 8 80 33 1 46 205

Match Corr 18 21 4 33 36 35 147
Orig 62 103 32 84 104 66 451

F1, etc. These corrections were performed by people with a
background in acoustics and phonetics. A sample correction
is shown in Fig 2. Following the removal of 85 samples and
correction of 159 samples, the 815 samples (159 corrected and
656 original samples) were manually inspected to determine
whether the transition of the first two formants followed the pat-
tern or not. Formant transitions at the VC and CV boundaries
were inspected and matched with the pattern. If the sample was
found to have a similar trend (rise or fall) to the pattern, it was
classified as matching. Even if any one of the formant transi-
tions was found to be not obeying the pattern, it was considered
to be not matching. Out of the 815 samples, a total of 598 sam-
ples (73.37%) were found to follow the pattern (match), and the
remaining 217 samples (26.63%) were found to be not follow-
ing it (mismatch). The illustration of samples not following the
pattern is shown in Fig 3. The final consonant-wise distribution
of the 900 samples is shown in Table 2.

All the formant corrections were performed using a
TKinter-based custom tool. Both the corrections and pattern-
based segregation were cross-verified by other annotators.
Further experiments were carried out utilizing the 815 samples.

Figure 3: A sample of each stop-consonant which does not fol-
low the fixed pattern [16] is shown. The corresponding pattern
is placed on the top-right of each sample.

3.2. Human Perceptual Test

A total of 289 samples were selected to study the effects of the
formant loci on the perception of consonants. These samples,
174 following the pattern and 115 not following, were care-
fully selected, covering samples of all subjects, consonants, and
vowels. The distribution of the 289 samples across vowels and
consonants is given in Table 3. For the perception test, a total
of 52 participants, all native Indians with no hearing impair-
ments, were employed. The perception test was carried out via

customized google forms. The 289 samples were distributed
among 10 forms(each consisting of 28-30 samples), and each
form was perceived and evaluated by 5 participants, with 6 par-
ticipants in two forms. In addition, six samples were dupli-
cated in each form to ensure the consistency of participants so
that each form would contain 34-36 samples. Hence, a total of
349 samples, including those repetitions, were used to carry out
the perceptual test. A participant was considered consistent if
he/she selected the same consonant for the repeated samples.
Else he/she was considered inconsistent. The participants were
informed of the audio format, ’Speak VCV Today’ beforehand.
Then, they were asked to listen to the audio samples as many
times as desired and mark the perceived consonant. No par-
ticular device or headphone was recommended; listeners chose
their own device as comfortable.

Table 3: Vowel and Consonant wise distribution of samples used
in perception test. A(B), where A represents samples not follow-
ing the pattern, and B represents samples following the pattern.

/b/ /d/ /g/ /p/ /t/ /k/ Total
/a/ 3(7) 0(10) 2(8) 4(6) 1(9) 10(0) 20(40)
/e/ 0(10) 0(9) 3(7) 0(10) 4(4) 3(4) 10(44)
/i/ 0(10) 0(9) 7(3) 2(6) 1(8) 8(1) 18(37)
/o/ 7(3) 0(10) 6(4) 8(2) 1(9) 10(0) 32(38)
/u/ 6(4) 1(9) 8(2) 10(0) 0(10) 10(0) 32(25)

Total 16(34) 1(47) 26(24) 24(24) 7(40) 41(5) 115(174)

Out of all responses, only the consistent ones were consid-
ered. Out of 52 participants, two participants, 1 from each of
the forms with 6 entries, were found to be inconsistent. Hence,
there were 5 consistent participants from each form (10 forms x
5 consistent participants = 50). The repeated samples, intended
to check the consistency, were not considered while calculating
the results. To conclude, all forms together having 349 sam-
ples (including duplicated samples) were filled by five consis-
tent participants, accounting for 1745 responses (= 349 samples
× 5 participants).

3.3. Consonant classification using Machine Learning

This classification experiment aimed to find the effect of for-
mant transition was performed in two settings: Setting 1: To
identify the consonants from the samples where the consonant
portion is removed Setting 2: To identify the consonants from
the samples with the consonant portion included. While the
first setting aided us in investigating the information contained
in formant transition, Setting 2 allowed us to compare the per-
formance of the algorithms with human responses. In both set-
tings, acoustic features of all frames from the first vowel nu-
cleus to the second vowel nucleus are considered except that
in the first setting features from frames corresponding to the
consonant region were discarded. Multiple experiments were
performed using four different classifiers, namely Logistic Re-
gression (LR), Support Vector Machine (SVM) with an RBF
Kernel, Random Forest (RF), XGBoost (XGB). Three differ-
ent features were studied, including statistical features (func-
tionals) of MFCCs alone, formants alone, and MFCCs and for-
mants combined. Eight functionals per formant/MFCC were
extracted: average, standard deviation, maximum and minimum
value, argmax ratio (= argmax/length of formant vector), argmin
ratio, kurtosis, and energy. These functionals were employed in
classifying the six stop-consonants. All the models were tested
on the 289 samples utilized in the perception test and trained on
the remaining 526 samples.
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We use scikit-learn to train the automated classifiers, and
use the default hyper-parameters. More details could be found
in the supplementary document.

4. Results and Discussion
4.1. Data Preprocessing

From Table 2, it is evident that the human speech production
system indeed does not always follow a fixed formant transition
for producing VCV with a stop-consonant. Out of 815 samples,
26.63% were found to be not abiding by the pattern. There is a
subtle difference between the distribution of voiced & unvoiced
stop-consonants. The loci proposed in [16] was based on voiced
stop-consonants and were generalized to unvoiced stops. But
in comparison, in this experiment, a more significant fraction
of the unvoiced stops were not following the pattern than their
voiced counterparts (cognates), as clear from Table 2. In addi-
tion, most of the alveolar stops followed the pattern compared
with the bilabial and velar stops.

4.2. Human Perceptual Test

We resort to Unweighted average recall (UAR) as our evalua-
tion metric, which exhibits the mean of the percentage correctly
classified in the confusion matrix diagonal. Our reason for con-
sidering UAR is the unbalance instances of classes we deal with
in the classification task, as is suggested in [34].

From a total of 1445 responses, a UAR of 92.91% was
recorded. A random grouping of the responses was done to
assess the scores of the 289 samples, i.e., without the five recur-
rences. Randomly 1 response per sample was selected, which
was repeated for all 289 unique samples. This random group-
ing of 289 samples made up one group. In such a manner, 30
such groups were created, and their average UAR and standard
deviation are reported in Table 4. The statistical test yielded a
t-value of 3.1370 and a p-value of 0.0027 from the t-test, which
mismatched and mismatched samples were considered.

Table 4: Average UAR (%) of the 30 groups Match-wise with
their standard deviation.

Match Mismatch Total
Mean(Std Dev) 93.54(1.6) 91.97(1.97) 92.91(1.38)

Note that samples following the pattern were perceived
more correctly, on average, than those that did not follow the
pattern. The deviation of formant transitions from the pattern
induces a minor yet significant change in the auditory impres-
sion of the stop-consonant. From Table 5, it is observed that,
out of 124 responses that were misclassified in the perception
test, 72 samples of them were samples from female subjects,
and the remaining 52 were samples from male subjects. Sev-
enteen each from 72 & 52 are to be unique subjects. It was
observed that most of the participants faced more difficulty in
classifying audio samples uttered by females than males. Table
5 depicts the gender-wise and match-wise (i.e., mismatch and
match) distribution among the wrongly chosen stop-consonants
from the perceptual test. 50.8 % of total wrong samples consti-
tute the matching category, whereas 49.2 % constitute the mis-
match category.

4.3. Consonant classification using Machine Learning

Table 6 showcases the results for the automated classification.
The best UAR of 54% in setting 1 was achieved by training a

Table 5: Gender & Match wise distribution of misclassified re-
sponses from the perceptual test.

Match Mismatch Total
Male 24 28 52

Female 39 33 72
Total 63 (50.80%) 61(49.20%) 124

RF model on the formant functionals. Whereas in setting 2, the
best UAR of 71.68% was achieved via an RF model trained on
the combined functionals of formants and MFCC. The inclusion
of the MFCC functionals of the consonant region increased the
score by 17.68%. Through this improvement, it is understood
that, while the formant transitions contain information on the in-
tervocalic consonant, it alone isn’t sufficient to identify the con-
sonant precisely. Breaking down the model’s performance in
setting 2, it achieves a UAR of 77.5% in identifying the samples
following the pattern and 68.35% in identifying the samples that
do not follow the pattern. This difference of 9.15% could be at-
tributed to the fewer training samples that do not follow the pat-
tern. In the training set of 526 samples, 424 follow the pattern,
and 102 samples do not. Due to the lesser count of the latter, the
model is probably unable to generalize to new samples that do
not follow the pattern. Indeed when the discarded samples were
added to the training set, the model’s overall UAR increased by
2%, generating a better-generalized model.

Table 6: UAR (%) of Consonant classification using Random
Forest Classifier. (·) indicates the standard deviation.

Match Mismatch Total
Setting 1 58.96 (4) 43.84 (9) 54.00 (1.9)
Setting 2 77.50 (3) 68.35 (2) 71.68 (2)

5. Conclusion
In this study, we evaluate the role of formant transitions in the
perception of intervocalic stop-consonants. For this purpose,
we utilize the SPIRE VCV corpus. We find that the human
speech-production system does not always follow a similar for-
mant pattern as suggested by [16] for producing the same stop-
consonant. We investigate the difference in the perception of the
samples that follow the pattern and those that do not. In addi-
tion, we utilize machine learning classifiers to study the effects
of the formant transitions in identifying the stop-consonants.
Through these, we show that the deviation of formant transi-
tions from the pattern induces a minor yet significant change in
the auditory impression of the stop-consonant. While the for-
mants had little impact on the perception of stop-consonants,
they had a larger impact on the machine learning classifiers.
Eventually, further analysis is required to appraise the appropri-
ateness concerning the formant transition observed here, includ-
ing the analysis of various speaking rates of samples. Future
studies could explore formant transitions in other languages,
such as Czech, which has palatalized voiced stops.
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