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Abstract

We explore cross-lingual multi-speaker speech synthesis and
cross-lingual voice conversion applied to data augmentation for
automatic speech recognition (ASR) systems in low/medium-
resource scenarios. Through extensive experiments, we show
that our approach permits the application of speech synthesis
and voice conversion to improve ASR systems using only one
target-language speaker during model training. We also man-
aged to close the gap between ASR models trained with syn-
thesized versus human speech compared to other works that
use many speakers. Finally, we show that it is possible to ob-
tain promising ASR training results with our data augmentation
method using only a single real speaker in a target language.
Index Terms: Speech Recognition, Speech Synthesis, Cross-
lingual Zero-shot Voice Conversion, Cross-lingual Zero-shot
Multi-speaker TTS, ASR Data Augmentation, Low-resource

1. Introduction
Text-to-Speech (TTS) systems have received a lot of attention
in recent years due to the great advances in deep learning, which
have allowed for massive use in applications such as virtual as-
sistants. These advances have allowed TTS models to achieve
naturalness similar to human speech [1, 2, 3, 4]. Still, most TTS
systems are tailored for a single speaker, where many applica-
tions could benefit from new-speaker synthesis, i.e., not seen
during training, employing only a few seconds of the target
speech. This approach is called zero-shot multi-speaker TTS
(ZS-TTS) [5, 6, 7]. Advances in TTS have motivated works that
exploit it as a way to improve Automatic Speech Recognition
(ASR). Researchers have explored two different approaches.
The first is parallel training of ASR and TTS models; in this
approach the TTS and ASR systems can improve themselves,
as in [8, 9]. The second is the use of a pre-trained TTS model
to generate new ASR training data, such as [10], [11] and [12].
In this work, we will focus on the latter approach.

Many studies that explore a pre-trained TTS model to gen-
erate ASR data used the LibriSpeech dataset [13] to train the
ASR model. For the TTS model training, [10] used 3 speak-
ers from the American English M-AILABS dataset [14], while
[11] and [12] trained the TTS model with more than 251 speak-
ers from LibriSpeech. In Table 1 we report the Word Error Rate
(WER) of the best experiment from the related works in the
test-other subset of the LibriSpeech dataset. Although the stud-
ies contain both test-clean and test-other results, we focus on the
results of the most difficult sub-set. Also, [12] reported results
using an external language model (LM); however, for fairness,
we omit this LM in our comparison.

The ASR models trained with synthesized speech combined

Table 1: Related works comparison in the test-other subset.

Paper TTS Model ASR Model Train data WER

[10] Tacotron
GST Wav2Letter

Human 16.21
Synthesized 81.78
Hum + Synt 15.47

[11] ZS-Tacotron
+ VAE LAS

Human 13.89
Synthesized 66.10
Hum + Synt 13.78

[12] GMVAE
Tacotron LAS

Human 14.10
Synthesized –
Hum + Synt 13.50

with human speech achieved relative improvement1 of 4.56%,
0.79% and 4.25% compared to the models trained with human
speech alone, respectively, for [10], [11] and [12]. A greater dif-
ference is observed between the model trained with only human
speech and only synthesized speech, with a relative difference
of 80.17% and 78.98%, respectively, for [10] and [11], which
motivates further improvements and research.

In parallel with our work, [15] explored cross-lingual voice
conversion (VC) for ASR data augmentation in low-resource
settings. They showed that when using a sensible amount of
voice conversion data augmentation, ASR performance is im-
proved in all low-resource languages explored.

Although previous work shows the potential for multi-
speaker TTS models for ASR data augmentation, these models
still require high-quality datasets with many speakers and hours
of speech to converge [12]. Generally, such models are trained
on English with big datasets such as LibriSpeech [13] and Lib-
riTTS [16], which is not suitable for low-resource languages
that do not have an open multi-speaker TTS dataset.

Although some multilingual multi-speaker datasets were
released in recent years [17, 18, 19], they just attend a small
number of languages and for many applications, even these may
not be sufficient to build a competitive ASR system. In addition,
creating a high-quality multi-speaker dataset is hard, because
it requires the effort of multiple target-language speakers. It
is especially hard for languages with small populations, where
recruiting participants is difficult or in more extreme scenarios
with languages that are almost extinct and have just a few speak-
ers (e.g. indigenous languages). In a range of scenarios creating
a high-quality multi-speaker dataset is not viable.

In light of this, an approach that applies TTS/VC for
ASR data augmentation that requires just a medium/low-quality
single-speaker dataset could make the application of this tech-
nology viable for languages that really need it, helping to pre-
serve/protect nearly extinct languages, for example. The objec-
tive of this paper is to improve upon such issues and make it

1We used relative improvement/difference metric to show the real
improvement achieved by related works’ approaches.
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viable. Here, we seek to answer two questions: Is a TTS model
trained with just one speaker in a given target language suffi-
cient for ASR data augmentation? Is only one human speaker in
the target language enough to get a reasonable ASR model via
cross-lingual voice conversion and cross-lingual multi-speaker
TTS ASR data augmentation? The contributions of this work
are as follows:
• A novel approach for ASR data augmentation that explores

cross-lingual voice conversion and a cross-lingual multi-
speaker TTS model. For TTS and voice conversion. We used
the YourTTS model [7], which was developed in a previous
work to meet the requirements needed for this paper. Our
novel approach requires just one speaker in the target lan-
guage, making the application of this technology possible for
low-resource languages;

• We are the first to combine multi-speaker TTS and voice con-
version for ASR data augmentation. In addition, we are the
first to explore cross-lingual multi-speaker TTS and cross-
lingual voice conversion using speakers of other languages to
fill the lack of speakers for low-resource ASR model training.

• We are the first to explore ASR data augmentation via TTS
with a very limited number of speakers. To do so, we emulate
a scenario where the ASR model and the TTS model would
need to be trained with just one real speaker (low-resource
language scenario) on two target languages. Our novel ap-
proach improves WER from 64-74% to 34-37%, approxi-
mately a 33% absolute improvement. Such results indicate
the feasibility of applying this technology for low-resource
languages.

2. Audio datasets
We used 3 languages/training datasets for the TTS model:

English: VCTK dataset [20], containing 44 hours of speech
from 109 speakers, sampled at 48KHz. We divided the VCTK
dataset into training, development and test subsets following
[7]. To further increase the number of training speakers, we
used the subsets train-clean-100 and train-clean-360 from Lib-
riTTS [16]. In the end, our TTS model was trained with approx-
imately 298 hours from 1,248 English speakers.

Portuguese: TTS-Portuguese Corpus [21], a single-
speaker male dataset in Brazilian Portuguese (pt-BR) contain-
ing approximately 10 hours, sampled at 48KHz. As the authors
did not use a soundproof studio, the dataset contains some en-
vironmental noise. Following [7], we resampled the audios to
16Khz and used FullSubNet [22] as a denoiser. For develop-
ment, we randomly selected 500 samples, leaving the rest for
training.

Russian: ru RU set of the M-AILABS dataset based on
LibriVox, consisting of 46 hours from 1 female and 2 male
speakers. We used samples only from the female speaker for
diversity, since we already used a male for pt-BR. For develop-
ment, we randomly selected 500 samples, leaving the rest for
training.

For all TTS datasets, pre-processing was carried out to nor-
malize volume and to remove long silences, following [7]. Af-
ter pre-processing, the datasets contained 8.38 hours for pt-BR
and 14.94 hours for ru-RU (Russian). For ASR training, we
used Common Voice version 7.0 [23] for pt-BR and ru-RU. In
all experiments, we used the default train, development and test
partitions. For pt-BR, these sets have 14.52, 8.9 and 9.5 hours,
respectively; and ru-RU has 25.95, 13.06 and 13.75 hours, in
the same order. In addition, the speaker distribution for train,
development and test partitions are 103, 238 and 1252 speakers

for pt-BR; and ru-RU has 117, 210 and 1202 speakers.

3. TTS model setup
In our previous work, we presented YourTTS model [7], a mul-
tilingual zero-shot multi-speaker TTS model, which achieved
state-of-the-art (SOTA) results using only a single-speaker
dataset in the target language. Although the focus of the model
is on TTS it can also do zero-shot voice conversion. This model
was developed to meet the requirements needed for this paper.
In the original work, we trained YourTTS using English (Lib-
riTTS and VCTK datasets), French (M-AILABS dataset) and
pt-BR (TTS-Portuguese Corpus). The model was trained us-
ing only one male pt-BR speaker, but still produced strong re-
sults in zero-shot multi-speaker TTS and zero-shot voice con-
version for pt-BR. Furthermore, it was able to produce female
voices even without being trained on female voices, making it
adequate for the objective of this study. Here, we fine-tuned
the YourTTS model in English, pt-BR and ru-RU. For this we
used transfer learning from the original checkpoints made pub-
licly available. The dataset in English and pt-BR were the same
dataset used in our previous work, but we replaced the French
M-AILABS dataset with a female speaker from the ru-RU M-
AILABS dataset due to experiment requirements as explained
in Section 4. We trained the YourTTS model for 140k steps
with the same parameters used in [7]. In summary, we trained
YourTTS with 1,248 speakers in English, 1 male pt-BR speaker
and 1 female ru-RU speaker. After the training, this model
checkpoint was used as TTS/VC model for all experiments in
this paper.

YourTTS can synthesize different audios for the same in-
put sentence. During inference, the latent variable, predicted by
the text encoder, is added with a random sample of the stan-
dard normal distribution multiplied by a temperature T . In
this way, diversity can be controlled by the temperature T .
As shown by [3], the manipulation of T allows for generat-
ing different pitches; for more details see [3, 4, 7]. Further-
more, YourTTS is trained with the stochastic flow-based dura-
tion predictor proposed in [4], which can produce several dif-
ferent speech rhythms for the same sentence. To do so, during
inference, a random sample of the standard normal distribution
is multiplied by a temperature Tdp and added to the latent vari-
able before being inverted by the flow. In this way, it is possible
to control the variety of rhythms with the temperature Tdp [4].
Finally, it is possible to control the speaking rates by multiply-
ing the predicted durations by a positive scalar L, thus making
the pronunciation faster when L is smaller and slower when L
is bigger.

4. Is a multi-speaker TTS model trained
with just one speaker in the target languages

enough for ASR data augmentation?
Previous works have shown a large gap between ASR models
trained with human and synthesized speech [11, 12], where re-
searchers have used a large number of speakers and hours in the
target language during the TTS training. To apply this method
to languages with low/medium resources, we need an approach
that only requires a single speaker in the target language. In this
section, we propose to employ YourTTS trained with only one
speaker in the target language to do data augmentation for ASR.
It is important to note that this TTS is also trained in English and
it is exposed to embeddings from English speakers. We follow
related works comparing ASR models trained with synthesized
and human speech, to verify if our approach can be used as data
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augmentation for ASR.
For fair comparison between human and synthesized

speech, we employ YourTTS model to generate a synthesized
version of pt-BR and ru-RU Common Voice datasets. For each
sentence in Common Voice, we generate its pronunciation for
the same speaker, using the sentence’s pronunciation as ref-
erence for speaker embedding extraction. So, we have used
speaker embeddings from the target language’s native speakers.
The idea being that if the zero-shot multi-speaker TTS model
is good enough, it will generate the same speaker’s voice as
in the original audio, additionally, the synthesized and human
dataset will have the same vocabulary. During the generation,
as explained previously in Section 3, diversity is achieved by
randomly choosing L, T and Tdp: for L, a value between 0.7
and 2, while for temperatures (T and Tdp) a value between 0
and 0.667.

To increase the diversity in ASR training, in some exper-
iments, we also explored three popular augmentation methods
in speech processing – additive noise, pitch shifting and room
impulse response (RIR) simulation. For additive noise and RIR
filters we have used the same approach and dataset from [24].
For pitch shift, we randomly chose a semitone from -4 to 4.
All augmentations are randomly selected with a 25% probabil-
ity of being chosen for each audio in every training step. For all
methods, we used the implementations available in the Python
Audiomentations2 package. We will refer to it as audio aug-
mentations (AA).

As for the ASR model, we use Wav2vec 2.0 [25], a large
self-supervised model trained on the VoxPopuli dataset [26].
We used the model checkpoint provided by the authors3 which
was trained on 100k hours of speech in the following 23 lan-
guages: Bulgarian (Bg), Czech (Cs), Croatian (Hr), Danish
(Da), Dutch (Nl), English (En), Estonian (Et), Finnish (Fi),
French (Fr), German (De), Greek (El), Hungarian (Hu), Italian
(It), Latvian (Lv), Lithuanian (Lt), Maltese (Mt), Polish (Pl),
Portuguese (Pt), Romanian (Ro), Slovak (Sk), Slovene (Sl),
Spanish (Es) and Swedish (Sv). We chose Pt and Ru because
Pt was used in the self-supervised pre-training and Ru was not,
presenting realistic results for both scenarios and are from dif-
ferent language families. We carried out four experiments:
• Experiment 1: ASR models trained in pt-BR and ru-RU with

Common Voice using the standard training and development
subsets. For pt-BR, the model was trained for 140 epochs and
ru-RU for 100;

• Experiment 1.1: Transfer learning from experiment 1,
adding audio augmentations (AA) in the training. In this ex-
periment, the ASR is trained with half the number of epochs
used in experiment 1.

• Experiment 2: Similar to experiment 1, but the model is
trained using the synthesized version of Common Voice in
pt-BR and ru-RU. For model training and development, we
used synthesized speech.

• Experiment 2.1: Transfer learning from experiment 2 plus
the AA. The ASR is trained with half the number of epochs
used in experiment 2.

To run the experiments, we use the HuggingFace Trans-
formers framework4. The models were trained with a NVIDIA
TITAN RTX 24GB GPU using a batch size of 8 and gradient
accumulation over 24 steps. We used the AdamW optimizer
with linear learning rate warm-up from 0 to 3e-05 in the first 8

2https://github.com/iver56/audiomentations
3https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli
4https://github.com/huggingface/transformers

epochs and after using linear decay to zero. During training, the
best checkpoint was chosen, using the loss in the development
set and early stopping after the development loss had not im-
proved for 10 consecutive epochs. The code used for all of the
experiments, as well as model checkpoints are publicly avail-
able at: https://github.com/Edresson/Wav2Vec-Wrapper.

Table 2 presents the WER results for our experiments on
the original pt-BR and ru-RU test subsets of Common Voice.

Table 2: Human and synthesized speech comparison (WER).

Exp. PT RU
1. Human Speech 23.50 25.47
1.1 Human Speech + AA 21.54 22.27
2. Synthesized speech 56.84 65.85
2.1 Synthesized speech + AA 43.99 50.46

The model trained only with human speech (Experiment
1) reached a WER of 23.50% and 25.47%, respectively for pt-
BR and ru-RU. The model trained only with synthesized speech
(Experiment 2) reached a WER of 56.84% and 65.85%, for pt-
BR and ru-RU. Therefore, without AA, the relative difference
between the model trained with only human speech and synthe-
sized speech is of 58.65% and 61.32% for those two languages.

As expected, fine-tuning the models with AA (Experiment
1.1 and Experiment 2.1) improved performance. The model
trained with human speech only improved its result by 1.96%
and 3.20% WER for pt-BR and ru-RU after the addition of AA.
The model trained only with synthesized speech improved by
12.85% and 15.39% WER. Therefore, using AA benefits the
model trained with synthesized speech much more than the one
with human speech. This can be explained by the absence of
noise diversity in the synthesized speech. Common Voice is a
dataset composed of a lot of environmental noises, whereas the
synthesized speech just has some artifacts, but not environmen-
tal noises. Therefore, with the use of AA, the gap between mod-
els trained only with human and synthesized speech is reduced
to a relative difference of 51.03% and 55.86% for those two lan-
guages. Our results are interesting because, despite using only a
single-speaker dataset for training the TTS model for pt-BR and
ru-RU, our ASR model trained only with synthesized speech
achieves a comparable result to related works. Considering
[11], the relative difference between models trained only with
human and synthesized speech was of 78.98%; and ours around
60% for two non-English languages. Even though this work
explores the English language in a setting with many available
speakers and it is not directly comparable, we believe that our
results indicate that our approach requiring just 1 speaker in the
target language, can be used for low-resource languages.

In this way, we believe that the YourTTS model proposed
previously meets the requirements of this paper, trained with
just one speaker in the target languages is enough to be used for
ASR data augmentation.

5. Is only one human speaker in the target
language enough to get a reasonable ASR

model via cross-lingual voice conversion and
cross-lingual multi-speaker TTS ASR data

augmentation?
In Section 4 we showed that YourTTS model trained with only
a single speaker in pt-BR and ru-RU was effective as ASR data
augmentation, achieving similar results as previous works that
explored multi-speaker datasets. Although the TTS model was
trained with only one target-language speaker, we have used all
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Common Voice dataset speakers’ embeddings to create the syn-
thetic version of this dataset. So, the speaker embeddings were
extracted from target languages’ native speakers. This approach
has shown good results, but many low-resources languages do
not have datasets with many available speakers. So, the results
reported are not realistic for extreme low-resource languages.
For this reason, in this section we explored the use of a single-
speaker in the target language, for training both TTS and ASR.
To make up for the lack of speakers during the creation of the
synthetic dataset, we have used English speakers, rather than
cloning speakers from the target language. We created two syn-
thetic datasets using YourTTS model:

GEN TTS: Was created by synthesizing all the sentences in
pt-BR and ru-RU Common Voice using English speaker embed-
dings, chosen at random from the 1,248 speakers available in
the training set. Differently from Section 4, no target-language
speaker embeddings are used because we focus on a more re-
stricted, extremely low resource scenario. Each sentence was
synthesized using one English speaker embedding. We would
like to note that, in preliminary experiments, we explored in-
creasing the number of speakers per sentence from this dataset;
however, this did not bring significant improvements. During
the generation of this dataset, as explained previously in Sec-
tion 3, diversity is achieved by randomly choosing L, T and
Tdp: for L, a value between 0.7 and 2, while for temperatures
(T and Tdp) a value between 0 and 0.667.

GEN VC: consists of the single-speaker dataset used for
training the TTS model in the target language converted to a
multi-speaker dataset using cross-lingual voice conversion with
English speakers. Each sample used in the TTS training was
converted to the voice of 5 speakers, chosen at random from the
1,248 English speakers. The value of 5 transfers per sample was
chosen in preliminary experiments.

We carried out three experiments that used AA and the
same training parameters used in Section 4:
• Baseline: ASR models trained with the single-speaker

dataset used during the TTS model training on pt-BR and
ru-RU.

• Upper Bound: ASR models trained on pt-BR and ru-RU
with Common Voice plus the single-speaker TTS dataset.

• Baseline + DA: human speech from a single-speaker in the
target language (TTS dataset), with data augmentation being
accomplished by YourTTS. For data augmentation we merge
the GEN TTS and GEN VC datasets, detailed above. Figure
1 presents a full pipeline diagram of this experiment.

Table 3 presents our experiments’ results on the original test
subsets of the pt-BR and ru-RU Common Voice datasets.

Table 3: Results on the pt-BR and ru-RU CV testsets (WER)

Experiment Train data PT RU
Baseline TTS dataset (single-speaker) 63.90 74.02
Upper Bound Common Voice + TTS dataset 20.39 24.80
Baseline + DA TTS dataset + GEN TTS + GEN VC 33.96 36.59

The model trained with just 1 target language speaker
(Baseline) achieved a WER of 63.90% and 74.02% for pt-BR
and ru-RU. The model trained with only 1 real target language
speaker (TTS dataset) with data augmentation using voice con-
version and speech synthesis (Baseline + DA), achieved a WER
of 33.96% and 36.59%. Therefore, our data augmentation ap-
proach in scenarios with just 1 real speaker available improves
the WER by 29.94% and 37.43% for pt-BR and ru-RU.

Comparing the results with the SOTA English ASR system
on Common Voice (7.7% achieved by [27]), these results do
not look so remarkable; however, [28] used approximately 158
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Figure 1: Full pipeline diagram for Baseline + DA experiment

hours of pt-BR speech and a non-self-supervised model with-
out an external LM and achieved a WER of 47.41% on the test
set of BRSD v2 dataset. Despite using a different dataset, [29]
showed that the Common Voice test set is more challenging than
the test set of BRSD v2, and for this reason, the model proposed
by these authors reached a higher WER on the Common Voice
dataset. In ru-RU, [30] used transfer learning from 5 large En-
glish datasets, trained the QuartzNet model [31] on Common
Voice, obtaining a WER of 32.20% on the test set. Therefore,
33.96% WER achieved by our model is probably superior to
the SOTA for pt-BR, before the introduction of self-supervised
learning approaches. Also, the WER of 36.59% achieved in ru-
RU is comparable with the SOTA. Comparing the results of the
Baseline + DA experiment with the Upper Bound (20.39% and
24.80% for pt-BR and ru-RU), our results still miss the Upper
Bound. However, the results are remarkable since the TTS and
ASR models were trained with just one real speaker in the tar-
get language, and the model was able to recognize the voice of
over a thousand speakers from the Common voice test set.

6. Conclusions and future work
We presented a novel data augmentation approach for ASR
training by using cross-lingual multi-speaker speech synthesis
and voice conversion. We show that it is possible to achieve
promising results for ASR model training with just a single-
speaker dataset in a target language, making it viable for low-
resource scenarios. Finally, our approach works both in a lan-
guage (pt-BR) present in the Wav2Vec 2.0 self-supervised pre-
training, as well as for a completely unseen language (ru-RU).
In future work, we intend to explore the use of a self-supervised
model feature extractor as a discriminator during the training
of the YourTTS model. In this way, the YourTTS model may
produce even more human-like speech. In addition, we intend to
do ablation studies using other SOTA ASR models like Whisper
[32] and WavLM [33]. Finally, we intend to apply our method
to Brazilian indigenous languages that have a few or even only
one single-speaker data available.
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