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Abstract
Conformers have recently been proposed as a promising mod-
elling approach for automatic speech recognition (ASR), out-
performing recurrent neural network-based approaches and
transformers. Nevertheless, in general, the performance of these
end-to-end models, especially attention-based models, is partic-
ularly degraded in the case of long utterances. To address this
limitation, we propose adding a fully-differentiable memory-
augmented neural network between the encoder and decoder
of a conformer. This external memory can enrich the general-
ization for longer utterances since it allows the system to store
and retrieve more information recurrently. Notably, we explore
the neural Turing machine (NTM) that results in our proposed
Conformer-NTM model architecture for ASR. Experimental re-
sults using Librispeech train-clean-100 and train-960 sets show
that the proposed system outperforms the baseline conformer
without memory for long utterances.
Index Terms: conformer, end-to-end speech recognition, neu-
ral Turing machine, memory-augmented neural networks, long-
form speech

1. Introduction
Traditional speech recognition systems rely on sophisticated
and individual components, including acoustic, pronunciation
and language models (LMs) [1]. In contrast, end-to-end (E2E)
speech recognition systems rely on a single deep neural net-
work that learns to map an input sequence of features or raw
audio to the corresponding labels; usually, characters or sub-
words [2, 3]. Because of this simplicity, and in some situa-
tions, superior performance over traditional systems, E2E sys-
tems have become a favoured procedure for automatic speech
recognition (ASR) [4, 5]. Some widely used E2E approaches
are based on connectionist temporal classification (CTC) [6], re-
current neural network transducers (RNN-T) [7] and attention-
based encoder-decoders (AEDs) [4].

The transformer [8] architecture is an AED-based system
that uses self-attention to capture long-range interactions. Nev-
ertheless, a transformer has more difficulty extracting fine-
grained local feature patterns than convolution neural networks
(CNNs) [9]. For this reason, conformers [9] have been pro-
posed as an approach for E2E ASR, which outperform RNN-
based approaches and transformers since they can model the
global and local dependencies of an audio sequence by combin-
ing CNNs with transformers. Nonetheless, E2E ASR methods,
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particularly AED-based procedures, are known to degrade per-
formance on long utterances when trained on short utterances
[10, 11]. Besides, long-form transcription is crucial for creating
continuous transcriptions of real-world scenarios, like lectures,
meetings, and video captions (e.g. YouTube).

The problem of long-form speech has been addressed in
some previous works by simulating training on longer utter-
ances [12, 13]. For example, [12] proposed a method where
the transformer or conformer accepts multiple consecutive ut-
terances simultaneously and predicts an output for the last ut-
terance only. This procedure is repeated with a sliding win-
dow using one-utterance shifts to recognise the whole record-
ing. Another solution is to segment the audio in advance using
a separate voice activity detector (VAD) based approach [14],
or an E2E model that learns to predict segment boundaries [15].
The E2E segmenter proposed in [15] relies on human-created
heuristics to insert end-of-segment tokens in utterances at train-
ing time so that the model can learn to predict those tokens.

Only few works try to improve the generalisation of E2E
ASR systems to long speech without requiring some pre-
processing stage or changing how the model trains and decodes
compared to traditional E2E ASR. For instance, [16] proposes
the replacement of self-attention with fast attention, which im-
proves the model generalisation ability for long utterances.

In contrast to the works mentioned above, we hypothesise
whether adding a memory-augmented neural network (MANN)
in between the encoder and decoder module – like a neural Tur-
ing machine (NTM) [17] – may be a convenient method to en-
rich the learning capacity of a conformer, contributing to in-
crease the network generalisation for longer utterances with-
out the need for any ad hoc pre-processing or optimisation in
training or decoding. Thus, NTMs have demonstrated superior
performance over long short-term memory cells (LSTMs) in
several learning tasks. Moreover, to our knowledge, few works
have investigated the use of MANNs for the E2E ASR task. In
particular, NTM has been used to perform unsupervised speaker
adaptation in [18] by storing i-vectors [19] and then reading
from the memory to combine the resulting read vector with the
hidden vectors of the encoder of the listen, attend and spell
(LAS) architecture [4]. However, in that work, the write op-
eration of the NTM was not explored, therefore not taking ad-
vantage of the full potential of the external memory.

In this work, we propose incorporating a MANN based on
NTM to improve the generalisation of the offline E2E ASR sys-
tem to long sentences. We refer to this newly proposed ASR
architecture as Conformer-NTM1. This proposed model and the
state-of-the-art (SOTA) conformer baseline (without memory)
are trained on Librispeech [20] 100 hours clean and 960 hours.

1https://github.com/Miamoto/Conformer-NTM.git
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Then, we use the test clean and other partitions to evaluate the
overall performance of all models. We follow this with an ab-
lation study, testing the models with different utterance lengths
(long and very-long). Our results show that the E2E system can
generalise better with the external memory for longer utterances
with the Conformer-NTM model. Notice that while the focus of
this work is on offline ASR settings, the proposed MANN is
also expected to complement streaming ASR approaches that
address the long-form ASR problem [10, 21, 22].

The rest of the paper is organised as follows. Section 2 sum-
marises the MANN system. Section 3 introduces the proposed
approach. In Section 4, we describe the experimental evalua-
tion and obtained results, and in Section 5, we provide some
concluding remarks and possible directions for future work.

2. Memory-augmented neural networks
MANNs refer to a class of neural networks equipped with ex-
ternal memory that can help improve the learning capability of
the neural network [17, 23, 24]. Examples of MANNs are the
NTM [17], described below and the differentiable neural com-
puter (DNC) [23].

2.1. NTM model

NTMs [17] can read and write arbitrary content to memory
cells without supervision by using a soft-attention mechanism.
Moreover, they are fully differentiable, which makes it possible
to train them in an E2E fashion.

The overall architecture of the NTM is composed of a con-
troller network, e.g., a deep neural network or RNN, that re-
ceives inputs, reads vectors and emits outputs in response. The
controller reads and writes from an external memory matrix via
a set of parallel read and write heads. Additionally, the con-
troller network emits a set of vectors and values for each indi-
vidual read (e.g., kt, βt, gt, st and γt) and write head (e.g.,
at, et,kt, βt, gt, st and γt), detailed below, to help in the read-
ing and writing operations.

The memory is a matrix M ∈ RN×W , where N is the
number of memory locations (rows) and W is the vector size
of each memory location (columns). The read operation at time
step t is the weighted average sum of all memory locations, i. e.,

rt =
∑

i

wread
t (i)Mt(i), (1)

where wread
t (i) is the weight associated to row i, and Mt(i)

is the memory vector from row i. Also, the sum of all weights
adds up to one. The write operation at time step t contains two
main steps. The first step is an erase phase, i. e.,

Mt(i)
′
= Mt−1(i)[1−wwrite

t (i)et], (2)

where 1 is a vector of ones and et ∈ RW is an erase vector.
Last, the second step is an add phase:

Mt(i) = Mt(i)
′
+wwrite

t (i)at, (3)

where at ∈ RW is an add vector.
The weights mentioned above for reading and writing are

computed using the same addressing mechanism in parallel for
each of the two heads. For this reason, we explain the address-
ing process in general terms. Overall, the addressing mech-
anism combines two main addressing mechanisms: content-
based addressing and location-based addressing. The first step
to computing the weights is to measure the similarity between

kt, outputted by the controller, and each entry of the memory,
Mt(i), by using cosine similarity:

K[u,v] =
u · v

∥u∥2 ∥v∥2
. (4)

By applying cosine similarity and softmax over the rows,
Mt(i), the computation of the weights using the content-based
addressing mechanism is obtained following:

wc
t (i) = softmax(βtK[kt,Mt])i, (5)

where βt, outputted by the controller, is a positive scalar param-
eter that determines how concentrated the content weight vector
should be. The following three steps are focused on location-
based addressing. The second stage creates wg

t by interpolat-
ing wc

t with the weight vector from last time step, wt−1, using
gt ∈ (0, 1), also outputted by the controller. This interpola-
tion operation allows the system to learn when to use or ignore
content-based addressing. Next, for the focus of the weights to
be shifted to different rows, the controller emits a shift weight-
ing vector, st, that defines a normalised distribution over the
allowed integer shifts. Each element in this vector gives the de-
gree to which different integer shifts can occur. The actual shift
occurs with a circular convolution:

w∗
t (i) =

N−1∑

j=0

wg
t (j)st(i− j). (6)

Next, there is a sharpening parameter γt ≥ 1, outputted
by the controller, which controls the sharpness of the vector
weights:

wt(i) = softmax(w∗γt
t )i. (7)

Finally, we have a weight vector, wt, that determines where
to read from and write to in memory, depending on the specific
head.

3. E2E ASR with a MANN
The main structure of our memory-based E2E ASR network is
depicted in Figure 1. In this architecture we add the proposed
external memory in between the encoder and decoder of the
Conformer system.

At first, the input goes through the encoder module, which
contains: a convolution subsampling module, a linear projec-
tion layer, a relative positional encoding module, N conformer
blocks and, at last, a layer norm. Then, the output of the layer
norm, h, goes trough the external memory system. For each
time step t, the vector ht will be transformed with a feedfor-
ward layer for each write and read head so that it is possible
to obtain all vectors and values required to help in the reading
and writing operations, as mentioned with more detail in Sec-
tion 2.1. Following, the attention weights for the read and write
head are computed via the addressing mechanism as described
in Section 2.1.

Writing and reading occur at each time step, allowing the
system to memorise long-term acoustic dependencies recur-
rently. After the read operation, the read vector is concatenated
with the encoder output ht. Then, this concatenated vector is
transformed into a new output vector with the same size of ht

by going through a feedforward layer. Next, the sequence of
outputs of the memory goes into the decoder. In addition, the
decoder also receives the transcription outputs shifted right as
input, which go through an embedding layer and a positional
encoding module. The decoder contains D transformer blocks.
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Figure 1: Conformer E2E ASR system with an external fully-differentiable memory.

At last, the E2E ASR system combined with the external
memory learns in a fully-differentiable way by utilising the joint
CTC-attention objective [25].

4. Experiments

4.1. Data and Experimental Setup

Table 1: Mean, minimum (Min.) and maximum (Max.) duration
in seconds of the training sets, the test clean, test other, and the
subsets long - 100 and very long - 100.

Set/Subset Category Mean Min. Max.

train-clean-100 full set 12.69 1.41 24.53
train-960 full set 12.30 0.83 29.74
test clean full set 7.42 1.29 34.96
test other full set 6.54 1.25 34.51
test clean long - 100 23.59 19.86 34.96
test other long - 100 21.11 17.13 34.51

concat-clean very long - 100 33.41 25.39 68.14
concat-other very long - 100 30.76 21.77 68.98

Our experiments use the Librispeech corpus exclusively.
We train with the train-clean-100 subset from Librispeech, with
28539 utterances and 585 speakers, and the train-960 set con-
taining 281241 utterances and 5466 speakers. We use the dev
clean and dev other, with 5567 utterances and 188 speakers. Fi-
nally, we report word-error-rate (WER) and character-error-rate
(CER) results for both test clean and test other, with 2620/2939
utterances and 87/90 speakers, respectively.

We also perform an ablation study varying the distribution
of the test data conditions, especially considering the utterance
length (long and very long). For the long setting, we created
subsets from the test clean and the test other containing only the
longest 100 utterances with the script subset data dir.sh, from
Kaldi [26]. For the very long set, we used the original time
segmentation information of the Librispeech corpus and con-
catenated the continuous segments present in the original test

clean and the test other sets. Then, we selected the 100 longest
concatenated segments using the same Kaldi script mentioned
above, resulting into two new subsets: concat-clean and concat-
other. Information about the average, minimum and maximum
length of the utterances of these subsets are present in Table 1.

ESPnet2 [27] is the toolkit we use to implement and investi-
gate our proposed methods. Also, we use a default ESPnet con-
former recipe from Librispeech to run all our setups. The con-
former baseline and the Conformer-NTM models were trained
on 2 NVIDIA GeForce RTX 3080. For the 100 hours setup,
all models were trained for 80 epochs, while for the 960 hours
setting, the models were trained for 50 epochs. In both settings,
an average of the ten best checkpoints in the dev set was used
as the final model. Notice that the Conformer-NTM requires
longer training time when compared to the baseline.

The conformer baseline model extracts 80-dimensional
FBANK acoustic features on the fly, followed by SpecAugment
[28] and global mean and variance normalization. The raw input
data has speed perturbation factors of 0.9, 1.0 and 1.1. Addition-
ally, the model uses as targets 5000-byte pair encoding (BPE)
[29] unigram units learned from the training data.

The encoder is composed of one Conv2D module followed
by 12 conformer blocks. The Conv2D includes two 2D-CNN
layers with 256 channels, a kernel size of 3 x 3, a stride of size
two and a ReLU activation. The decoder is composed of six
transformer blocks. Both the encoder and decoder have four at-
tention heads of dimension 256. The hidden dimension of the
feedforward layer for the encoder and decoder is 256, while
the output dimensions are 1024 and 2048, respectively. Also,
the Adam optimizer was used with a learning rate of 0.002, a
weight decay of 0.000001 and 15000 warmup steps. The num-
ber of batch bins for both training setups (train-clean-100 and
train-960 hours) was 16 million. Also, the CTC weight was set
to 0.3 for training and testing time.

Regarding the external memories, we first experimented
with a different number of rows (128, 256, 512) and columns
(5,8,10,40) for the NTM using the train-clean-100 hours train-
ing setup. The best configuration parameters discovered were
256 rows and ten columns. We also tried to run with a differ-
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Table 2: (WERs [%] (CERs [%]) on the E2E ASR proposed models – trained with train-clean-100 and train-960 sets from Librispeech
– for the test other and clean sets (full set, long - 100 and very long - 100).

Full Set Long - 100 Very Long - 100

Model LM test clean test other test clean test other concat-clean concat-other

Conformer-100h - 6.5 (2.6) 17.4 (8.5) 7.5 (3.4) 16.6 (8.0) 12.2 (6.5) 24.5 (14.3)
Conformer-NTM-100h - 6.4 (2.4) 17.2 (8.4) 6.8 (2.6) 15.8 (7.3) 9.2 (4.1) 21.7 (12.2)

Conformer-960h - 2.8 (1.0) 6.7 (2.9) 3.3 (1.2) 6.5 (2.7) 10.0 (5.8) 15.3 (9.8)
Conformer-NTM-960h - 2.7 (0.9) 6.8 (2.8) 3.0 (0.9) 5.8 (2.1) 4.3 (2.0) 11.6 (6.9)

Conformer-100h 6-gram 5.3 (2.3) 14.7 (7.6) 6.3 (3.0) 14.2 (7.1) 10.0 (5.9) 21.2 (12.9)
Conformer-NTM-100h 6-gram 5.2 (2.1) 14.5 (7.4) 5.5 (2.3) 13.6 (6.5) 7.4 (3.7) 18.9 (11.2)

Conformer-960h 6-gram 2.4 (0.8) 5.8 (2.5) 2.7 (0.9) 5.3 (2.4) 9.3 (5.5) 14.7 (9.7)
Conformer-NTM-960h 6-gram 2.4 (0.8) 5.9 (2.5) 2.7 (0.8) 4.8 (1.9) 3.9 (1.8) 10.8 (6.7)

ent MANN, the DNC [23], which is the follow-up of the NTM
system, but for the same chosen parameters, the NTM gave the
best results in preliminary experiments.

At last, we used the KenLM toolkit [30] with Kneser-Ney
smoothing to train a 6-gram LM. For that, we used the Lib-
rispeech LM corpus from Kaldi and applied the BPE model to
transform all words into sub-word units. The beam size is 60,
and the weight for the 6-gram LM is 1. Furthermore, we report
results with and without LM.

4.2. Results

Table 2 compares the performance of our proposed architecture,
Conformer-NTM, versus the ESPnet conformer baseline, with
and without an LM.

Regarding the ”Full Set” column results, without an LM,
the Conformer-NTM slightly improves upon the Conformer
baseline for test clean and test other in both training settings
(train-clean-100 and train-960), except for the test other in the
train-960 setting, where the Conformer-960h model achieves
6.7%/2.9% WER/CER and the Conformer-NTM-960h model
achieves 6.8%/2.8% WER/CER.

Decoding with the LM, our proposed models still achieve
the lowest WERs and CERs compared to the baseline model,
except for the train-960 setting, where the results in terms of
WER are the same for the Conformer and Conformer-NTM.

4.3. Analysis

To examine the behaviour of the Conformer-NTM model for
longer sentences, we decided to create subsets from the test
clean and the test other sets containing long and very long utter-
ances as described in Section 4.1, and evaluate its performance
under these conditions.

4.3.1. Long Utterances

Regarding long utterances, without LM, we can observe from
Table 2 (”Long - 100” column) that the Conformer-NTM model
achieves the lowest WER and CER results compared to the
baseline for both test clean and test other. For the train-clean-
100 setting, the Conformer-NTM model improves from 7.5%
to 6.8% in WER for the test clean and improves from 16.6%
to 15.8% WER for the test other. For the train-960 setting, the
Conformer-NTM model improves from 3.3% to 3.0% in WER
for the test clean and from 5.3% to 4.8% WER for the test other.

With LM, the Conformer-NTM model still obtains better
results for both test clean and test other subsets, except for the

train-960 setting in the test clean subset where the result of the
Conformer is equal to the Conformer-NTM in WER.

4.3.2. Very Long Utterances

Concerning very long utterances, described in Section 4.1, we
can observe from Table 2 (”Very Long - 100” column) that the
baseline conformer results start to degrade more when com-
pared to the baseline conformer results in column ”Long - 100”,
mainly because the distribution of lengths in concat-clean and
concat-other is more distant from the distribution of lengths
present in the training and development data.

Additionally, with and without LM, the Conformer-NTM
improves by a significant margin all the WER and CER scores
when compared to the baseline conformer in both training set-
tings, i.e., train-clean-100 and train-960. For instance, in the
train-960 setting using LM, the Conformer-NTM achieves a rel-
ative WER reduction up to 58.1% and 26.5% for the concat-
clean and concat-other sets, respectively.

These improvements demonstrate that the MANN based on
the NTM memory helps the E2E Conformer ASR system to
generalise better for very long sentences not seen during train-
ing without relying on any pre-processing of the data or chang-
ing training and decoding strategies when compared to tradi-
tional E2E ASR. Furthermore, the presence of the LM does
not affect the improvements of the Conformer-NTM when com-
pared to the conformer baseline. We hypothesise that the NTM
memory learns to create more extended contexts at an acoustic
level which benefits the decoder of the conformer when making
the inference step.

5. Conclusions and Future Work
In this work, we propose a new architecture, Conformer-NTM,
that combines a MANN (based on the NTM) with a conformer
for E2E ASR. We demonstrated that including the external
memory is relevant to enhance the performance of the E2E
ASR system for long utterances. Also, we observed that the
Conformer-NTM starts to be more effective when the distribu-
tion length of the test data gets further away from the distribu-
tion length of the training data. Furthermore, in the presence
of an LM and for very long utterances, the Conformer-NTM in
the train-960 setting achieves a 58.1% WER relative reduction
for the concat-clean set and a 26.5% WER relative reduction
to the concat-other when compared to the Conformer baseline.
Our future work includes investigating the effect of the NTM
on other SOTA E2E ASR architectures.

2221



6. References
[1] M. Gales and S. Young, “The application of hidden markov mod-

els in speech recognition,” Foundations and Trends® in Signal
Processing, vol. 1, no. 3, pp. 195–304, 2008.

[2] A. Graves and N. Jaitly, “Towards end-to-end speech recognition
with recurrent neural networks,” in Proceedings of the 31st Inter-
national Conference on Machine Learning (ICML), ser. Proceed-
ings of Machine Learning Research, vol. 32. PMLR, Jun 2014,
pp. 1764–1772.

[3] Z. Xiao, Z. Ou, W. Chu, and H. Lin, “Hybrid ctc-attention based
end-to-end speech recognition using subword units,” in 2018 11th
International Symposium on Chinese Spoken Language Process-
ing (ISCSLP). IEEE, May 2018, pp. 146–150.

[4] W. Chan, N. Jaitly, Q. Le, and O. Vinyals, “Listen, attend
and spell: A neural network for large vocabulary conversational
speech recognition,” in 2016 IEEE international conference on
acoustics, speech and signal processing (ICASSP). IEEE, May
2016, pp. 4960–4964.

[5] C. Chiu, T. Sainath, Y. Wu, R. Prabhavalkar, P. Nguyen, Z. Chen,
A. Kannan, R. Weiss, K. Rao, E. Gonina et al., “State-of-the-art
speech recognition with sequence-to-sequence models,” in 2018
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, Apr 2018, pp. 4774–4778.

[6] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Con-
nectionist temporal classification: labelling unsegmented se-
quence data with recurrent neural networks,” in Proceedings of
the 23rd international conference on Machine learning (ICML),
Jun 2006, pp. 369–376.

[7] A. Graves, “Sequence transduction with recurrent neural net-
works,” In Proceedings of the 29th International Conference on
Machine Learning (ICML), 2012.

[8] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you
need,” in Advances in Neural Information Processing Systems
(NIPS), vol. 30. Curran Associates, Inc., 2017.

[9] A. Gulati, J. Qin, C. Chiu, N. Parmar, Y. Zhang, J. Yu,
W. Han, S. Wang, Z. Zhang, Y. Wu, and R. Pang, “Conformer:
Convolution-augmented Transformer for Speech Recognition,” in
Proc. Interspeech, 2020, pp. 5036–5040.

[10] A. Narayanan, R. Prabhavalkar, C. Chiu, D. Rybach, T. Sainath,
and T. Strohman, “Recognizing long-form speech using streaming
end-to-end models,” in IEEE Automatic Speech Recognition and
Understanding Workshop (ASRU), 2019, pp. 920–927.

[11] C. Chiu, W. Han, Y. Zhang, R. Pang, S. Kishchenko, P. Nguyen,
A. Narayanan, H. Liao, S. Zhang, A. Kannan et al., “A com-
parison of end-to-end models for long-form speech recognition,”
in 2019 IEEE Automatic Speech Recognition and Understanding
Workshop (ASRU). IEEE, 2019, pp. 889–896.

[12] T. Hori, N. Moritz, C. Hori, and J. Le Roux, “Transformer-
based long-context end-to-end speech recognition.” in Proc. In-
terspeech, October 2020, pp. 5011–5015.

[13] T. Hori, N. Moritz, C. Hori, and J. L. Roux, “Advanced long-
context end-to-end speech recognition using context-expanded
transformers,” in Proc. Interspeech, August 2021, pp. 2097–2101.

[14] M. Bain, J. Huh, T. Han, and A. Zisserman, “Whisperx: Time-
accurate speech transcription of long-form audio,” arXiv preprint
arXiv:2303.00747, 2023.

[15] W. R. Huang, S. yiin Chang, D. Rybach, T. N. Sainath, R. Prab-
havalkar, C. Allauzen, C. Peyser, and Z. Lu, “E2e segmenter:
Joint segmenting and decoding for long-form asr,” in Proc. In-
terspeech, September 2022.

[16] B. Lyu, C. Fan, Y. Ming, P. Zhao, and N. Hu, “En-hacn: Enhanc-
ing hybrid architecture with fast attention and capsule network for
end-to-end speech recognition,” IEEE/ACM Transactions on Au-
dio, Speech, and Language Processing, vol. 31, pp. 1050–1062,
2023.

[17] A. Graves, G. Wayne, and I. Danihelka, “Neural turing machines,”
arXiv preprint arXiv:1410.5401, 2014.

[18] L. Sarı, N. Moritz, T. Hori, and J. Roux, “Unsupervised speaker
adaptation using attention-based speaker memory for end-to-end
asr,” in IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2020, pp. 7384–7388.

[19] N. Dehak, P. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet,
“Front-end factor analysis for speaker verification,” IEEE Trans-
actions on Audio, Speech, and Language Processing, vol. 19,
no. 4, pp. 788–798, 2010.

[20] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Lib-
rispeech: an asr corpus based on public domain audio books,”
in IEEE international conference on acoustics, speech and signal
processing (ICASSP). IEEE, 2015, pp. 5206–5210.

[21] C.Wu, Y.Wang, Y.Shi, C.Yeh, and F.Zhang, “Streaming
Transformer-Based Acoustic Models Using Self-Attention with
Augmented Memory,” in Proc. Interspeech 2020, 2020, pp. 2132–
2136.

[22] E.Tsunoo, Y.Kashiwagi, T.Kumakura, and S.Watanabe, “Trans-
former asr with contextual block processing,” in IEEE Auto-
matic Speech Recognition and Understanding Workshop (ASRU).
IEEE, 2019, pp. 427–433.

[23] A. Graves, G. Wayne, M. Reynolds, T. Harley, I. Danihelka,
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